
AIAD-A268 518! ' USAISEC,,ii,,11
US Amy Information Systems Engineering Command
Fort Huachuca, AZ 85613-5300

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,

COMMUNICATIONS, AND COMPUTER SCIENCES

SAMeDL:
Technical Report

and Appendices A, B, and G

ASQB-GI-92-015

September 1992 DTIC 1,

A.- UG2519931

AIRMICS r v
115 O'Keefe Building
Georgia Institute of Technology 93-19669
Atlanta, GA 30332-0800 93ý 69,

93 8 24 005

SECURITY CLASSIFICATION OF THIS PAGE
Form Approved

REPORT DOCUMENTATION PAGE OM13 No. 0704-0188
Exp. Date: Jun 30, 1986

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCQASSIFI NONE
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONIAVAILABILITY OF REPORT

N/A
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
NIA

Sa. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

6c. ADDRESS (City, State, and Zip Code) 7b. ADDRESS (City, State, and ZIP Code)

N/A
8b. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

Software Technology Branch, ARL AMSRL-CI-CD

Sc. ADDRESS (City. State. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
115 O'Keefe Bldg. PROGRAM PROJECT TASK WORK UNIT
Georgia Institute of Technology ELEMENT NO. NO. NO. ACCESSION NO.
Atlanta. GA 30332-0800

11. TITLE (include Security Classification)

SAMeDL: Technical Report & Appendices A, B & G

12. PERSONAL AUTHOR(S)
MS. Deb Waterman

13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year. Month,.O 15. PAGE COUNT

Technical Paper FROM Apr 91 TO Seot 92 Sept 15, 1992 81
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP Ada Database Access, SAMeDL, Ada extension mod-
ule, SQL

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report details the research efforts into the SQL Ada Module Data-
base Description Language (SAMeDL). Four compilers are presented
(Oracle, Informix, XDB, and Sybase) that allow Ada application programs
to access database using a standard SQL query language. Copies of the
compiler can be obtained from the DoD Ada Joint Program Office
703/614-0209.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
[0 UNCLASSIFIED/UNLIMITEDQ3 SAME AS RPT. Q DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONEcInclude Area oae 21c. OFFICE SYMBOL

LTC David S. Stevens (404) 894-3110 AMSRL-CI-CD
DD FORM 1473. 84 MAR 83 APR edltlun may be used unto exhausted.

AN other editions wre obsolete. SECURITY CLASSIFICATION OF THIS PACE

This research was performed by Statistica Inc., contract number DAKF11-91-
C-0035, for the Army Institute for Research in Management Information,
Communications, and Computer Sciences (AIRMICS), the RDTE organization of
the U. S. Army Information Systems Engineering Command (USAISEC). This final
report discusses a set of SAMeDL compilers and work enviornment that were devel-
oped during the contract. Request for copies of the compiler can be obtained from
the DoD Ada Joint Program Office, 703/614/0209. This research report is not to
construed as an official Army or DoD Position, unless so designated by other
authorized documents. Material included herein is approved for public release,
distribution unlimited. Not protected by copyright laws.

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

Glenn E. Racine, Chief ames D. Gantt, Ph.D.
Computer and Information Director
Systems Division AIRMICS

Aeeession For
TIS v •~(RA&I ["

DTL' TAB 0
Ut. L,.',5•.` ua ed

IJu :; >•" .:tJ or
)TIC QUALITY INSPECTED I

kDIt ri -bution/

A ttl ..t.y Codes

IAr-ll ani/or
Dist S•v- •:.

SAMeDL.TR.10.15 Sep 92

S.IeDL Pilot Project

TZCNI CAL RZPORT

Prepared for

U. S. Army Institute for Research in Management
Information, Comnunication and Co=puter Science (AIRMICS)

115 O'Keefe Building
Atlanta, GA 30332-0800

Contract No. DAKFll-91-C-0035
CDRL A003

Prepared by

STATISTICA, Inc.
12200 Sunrise Valley Drive, Suite 300

Reston, Virginia 22091

SAheDL.TR.1O.15 Sep 92

TIELZ OF CONTflTS

1.0 INTRODUCTION 1

1.1 Scope . 1

1.2 Background 2

1.2.1 SAMeDL 2

1.2.2 SIDPERS-3 2

1.2.3 Intermetrics 3

1.3 Technical Report Overview 3

2.0 TASK 1 - SHADOW TASK 4

2.1 Existing Application Migration 4

2.1.1 Module Input Migration 7

2.1.1.1 Approach 7

2.1.1.2 Observations 8

2.1.2 Interface Migration 8

2.1.2.1 Approach 8

2.1.2.2 Observations 8

2.1.3 Data Migration .I..................................... 10

2.1.3.1 Approach 10

2.1.3.2 Observations 10

2.1.4 Test 10

2.1.4.1 Test Plan 11

2.1.4.2 Test Results 11

2.2 New Application Development 12

2.2.1 Approach 13

2.2.2 Observations 17

SAIMDL.TR.10.15 Sep 92

2.2.2.1 Strong Typing 17

2.2.2.2 Error Handling 18

2.2.2.3 Null Handling 19

2.2.3 Multiple Target Databases 19

3.0 TASK 2 - TOOLSET DEVELOPMENT 21

3.1 SAMeDL Module Manager Development 21

3.1.1 Design 21

3.1.2 Code 22

3.1.3 Test .. 22

3.2 SAMeDL Compiler Upgrade 22

3.2.1 Design 22

3.2.2 Code 23

3.2.3 Test 23

3.3 SAMeDL Compiler Retargets 24

3.3.1 Informix 25

3.3.2 XDB 25

3.3.3 Sybase 25

3.3.4 Oracle .. 26

3.4 Other Support Tool Development 27

Figures

Figure 2-1 Layered Approach 5

Figure 2-2 The SIDPERS-3 Prototype Architecture 6

Figure 2-3 The Circular Dependency between SAMeDL and - . 9

Figure 2-4 The Circular Dependency Solution - . 9

Figure 2-5 Definition and Abstract Modules for Unit Object . 14

ii

SAMeDL.TR.10.15 Sep 92

Figure 2-6 Sample Schema Module for Redesigned Application 15

Figure 2-7 The SAMeDL Redesign Architecture 16

Figure 2-8 Sample Status Map Declaration 18

Figure 2-9 CONNECT Statements 20

Tables

Table 2-1 CSUs in the Ada Application Layer. 4

Table 2-2 SIDPERS-3 Layers/Architecture Correlation . 7

Appendices

Appendix A - Acronyms and Bibliography A-i

Appendix B - SAMeDL Development Environment Module Manager
Top Level Design B-1

Appendix C - SAMeDL Development Environment Test Plan C-I

Appendix D - SAMeDL Language Reference Manual D-1

Appendix E - SAMeDL Installation Guides E-1

Appendix F - SAMeDL User Manuals F-i

Appendix G - CSU Test Cases G-1

iii

SIIeDL.TR.10.15 Sep 92

1.0 INTRODUCTION

The SQL Ada Module Description Language (SAMeDL) Pilot Project is
an Ada Technology Insertion Program (ATIP) that explores the merits
of the SQL Ada Module Extensions (SAME) methodology. SAME
methodology entails interfacing Ada applications with relational
Database Management Systems (DBMSs) that use SQL. Developed by Dr.
Marc Graham at the Software Engineering Institute (SEI), SAMeDL is
the language created to implement the SAME architecture.

1.1 Scope

The SAMeDL Pilot Project analyzes the value of the SAME methodology
for use on future Department of Defense (DoD) DBMS applications.
As a basis for the study, this project uses the SAMeDL to redesign
the SQL interface layer of an existing Ada application. This
effort is referred to as a "Shadow Task" because development does
not impact or influence the original Ada application development.
The Ada application chosen for the pilot project is the Standard
Installation Division Personnel System - Third Release (SIDPERS-3)
Demonstration Prototype, a large Army Management Information System
(MIS). The prototype was originally designed using another SQL
binding.

STATISTICA approaches the pilot project in two stages: First, the
SQL binding layer is replaced with a duplicate layer implemented in
SAMeDL. The Ada application design and code remains unchanged.
Second, the Ada application and SQL interface layer will be
redesigned to incorporate features of Ada not incorporated in the
original application design due to the SQL binding. SAMeDL
provides the means to use Ada features such as strong typing and
exception handling.

As a byproduct of the SAMeDL Pilot Project analysis, a SAMeDL
toolset is being developed for four commercial DBMSs.
Intermetrics, Inc. is supporting STATISTICA in this contract by
developing the support toolset. The toolset includes a SAMeDL
compiler and Module Manager. The Module Manager is a library
manager that maintains source code controls and performs
consistency checks on SAMeDL source code and its corresponding
Ada/SQL interface. The resulting toolset provides the Ada
comunnity with a more mature SAMeDL compiler that is standard
across DBMSs. With each retargeting of the compiler, STATISTICA
ports the Ada application layer and reports on the portability of
the compiler.

1

SAMeDL.TR.10.15 Sep 92

1.2 Background

1.2.1 SAMeDL

In 1986, the American National Standards Institute (ANSI) issued a
standard for SQL. At that time, the standard included annexes
describing interfaces between SQL and programming languages, such
as COBOL, FORTRAN, and Pascal. In 1987, the Ada Joint Program
Office (AJPO) tasked SEI to define an Ada SQL interface. SAME is
the result of SEI's efforts. The SAME uses Ada features to provide
the following services to Ada SQL applications:

"* A robust treatment of SQL data within application
programs which effectively prevents use of null values as
though they were not null whilc requiring no run time
conversion of non-null data.

"* A treatment of DBMS errors and exceptional conditions
which is flexible, allowing application designers to
decide which conditions are expected and which are
irrecoverable, yet prevents any such DBMS condition from
being "missed" by the application.

"* An extended database description using abstract,
application oriented types and the application of a
strong typing discipline to SQL statements. (3]

1.2.2 SIDPERS-3

As the prime contractor, STATISTICA is developing SIDPERS-3 for the
Army. This Standard Army Management Information System (STAMIS)
automates applications in 36 personnel work categories.

In May 1991, STATISTICA presented a SIDPERS-3 Demonstration
Prototype to the Army that featured the functional requirements
described in several of the personnel work categories. The
prototype validates many of the technical characteristics
associated with an MIS development in Ada, such as appropriateness
of Ada binding, portability of applications, and robustness of the
Ada Programming Support Environment (APSE).

Although developers on the SIDPERS-3 Team have had many successes
in their use of Ada, binding Ada to DBMSs has presented significant
challenges. The SIDPERS-3 Team desires a binding that is straight
forward to implement, insulates the application software from the
specificity of a particular database implementation, and allows the
Ada software engineer to use the full power of Ada. SEI's work in
developing the SAME methodology has been closely followed. Early
in the program, the SIDPERS-3 Team reached a consensus that SAMeDL,
with an appropriate SAMeDL support toolset, would provide the

2

SAMeDL.TtR.1O.15 Sep 92

necessary Ada/DBMS binding layer. However, SAMeDL lacked support
tools, realistic application examples, and usage metrics (SAMeDL
has not been employed as the Ada/SQL binding on any large Ada MIS
program to date). Because of these barriers, the SIDPERS-3 Team
felt that it was too great a technical risk to rely on SAMeDL.
Hence, the SIDPERS-3 Team decided to forego the use of SAMeDL in
favor of other Ada/SQL interfacing methods.

1.2.3 Intermetrics

Intermetrics has been actively involved with the SAME Design
Committee since early 1988. To assist with the development of the
SAME methodology and the emerging standard SAMeDL during this
period, Intermetrics developed early prototype SAMeDL compilers to
promote the insertion of SAMeDL into mainstream Ada applications.
While these activities were useful in exhibiting proof of concept,
the seed that was planted did not grow as hoped; broad acceptance
and use of SAMeDL by the Ada community has not yet materialized.

A number of factors contribute to the Ada community's reluctance to
insert SAMeDL into large Ada applications; STATISTICA's experience
indicates that two of the most significant factors are:

1.- The lack of realistic SAMeDL applications, user

experiences, and related measurements.

2. A shortage of robust SAMeDL support tools.

1.3 Technical Report Overview

The purpose of this technical report is to report quarterly the
results of STATISTICA's analysis and the progress of the toolset
development. The report will be accumulative in that sections will
be completed as activities are reported. The complete outline of
the report is provided as a work plan. As subtasks are completed,
the corresponding subsections will be completed.

Section 1 provides the introduction and background needed by the
casual reader for understanding of the remaining sections. The
project comprises two major tasks: the Shadow Task and Toolset
Development. Section 2 discusses the Shadow Task during which
developers migrate the existing interface layer to SAMeDL and then
redesign and re-implement the application layer to incorporate
SAMeDL features. Section 3 reports the efforts to develop the
Module Manager, upgrade the SAMeDL compiler, and retarget the
compiler to the four DBMSs.

Appendices provide supplemental information, and will be provided
as the information is gathered.

3

SAMD*L.TR.10.15 Sep 92

2.0 TASK 1 - SHADOW TASK

To show the feasibility and benefits of using SAMeDL, STATISTICA
will redesign and re-implement portions of the SIDPERS-3 prototype
demonstrated to the Army in May 1991. Table 2-1 lists the Computer
Software Units (CSUs) of the prototype that will compose the
application layer of the SAMeDL Project. These CSUs were chosen
based on the functionality and services required of the database.
Each CSU in the application layer represents a complete thread of
control to facilitate the analysis and measurement of performance.
The prototype currently uses XDB, a Commercial Off the Shelf (COTS)
SQL DBMS.

Approx.
CSU Tide Descr•pion Services LOC"

Sgt Ssg Promotion Eligibility Unit This CSU initially calculates a soldier's Select 2,866
promotion points and generates PCN Update
AAA-209, DA Form 3355-E, Insert
Promotion Point Worksheet. Fetch

Promotion Standing List Removal This CSU removes a soldier from the Select 2,150
Action E$-E6 Promotion Standing List and Delete

generates PCN AAA-034, a Removal
From Local Recommended List
memorandum.

Lines of Code

Table 2-1 CSUs in the Ada Application Layer

2.1 Existing Application Migration

Figure 2-1 shows that developers used a layered approach in the
design of the prototype to isolate the database. Figure 2-2 shows
the layers in more detail, with each box representing a group of
Ada packages. Table 2-2 depicts the correlation between the layers
in Figure 2-1 and the Ada packages depicted in Figure 2-2.

Design decisions made early in the project were premised on using
a commercial DBMS. Inherently, SQL databases, limited to the
standard SQL data types, do not support strong data typing. To
avoid anonymous types and to add reliability and maintainability to
the system, the SIDPERS-3 Team created a layer of Type packages.
These packages declare subtypes corresponding to each column in the
database. In the Database Support layer, data retrieved from the

4

SAX.DL.TR.1O.15 Sep 92

database is explicitly converted to SIDPERS-3 types before
processing by the application layer. The Database Support layer
isolates the SIDPERS-3 application from changes that may occur to
the database.

SIOPERS-3 APPLICATION SANOL APPLICATION

Inefc Lae Inefc La r

Ada Progranfng Interface l A;a Prograning Interface

Figure 2-1 Layered Approach

The SIDPERS-3 Team developed a Man Machine Interface (MMI) to
handle all user interfaces, including reports. The data is passed
between the MI and the application as string objects to support
all of the SIDPERS-3 data requirements. The Types packages written
to support the database interface also serve the MMI by eliminating
a conversion layer between the application and the MMI.

Finally, to avoid the bulky processing required to test for missing
data (null values), the SIDPERS-3 Team created the database with
NOT NULL columns.

5

SAheDL.TR.10.15 Sep 92

Reports DriverScen

Packsage

Supor Dt e Stre Supr
_I

AI

CodpLe copiter

DBM 60shows dependenicies

Indicates control
ftow

Figure 2-2 The SIDPERS-3 Prototype Architecture

6

SAXeDL.TR.1O.15 Sep 92

Figure 2-1 Layer IFigure 2-2 Box Conversion Efforts

Ada Application Application Driver No changes will be made to
Reports the application layer.
Screens
Field Support
Data Stores
Types Packages

Interface Layer Database Support Remove Commit/Rollback
procedures; add functions to
convert SAMeDL types to
SIDPERS-3 types; remove
exception handlers.

SQL Module Database Access Replace SQL modules with
Generated Code SAMDL modules.

Table 2-2 SIDPERS-3 Layers/Architecture Correlation

There are no changes to the Ada application layer in the
Application Migration subtask. The prototype uses XDB's module
compiler as the SQL binding to the Ada application layer. For the
SAMeDL Pilot Project, this layer is replaced with a SAMeDL layer.
Subsection 2.1.1 discusses this conversion process. The Database
Support packages require modifications to remove features provided
by SAMeDL and add conversions of SAMeDL types to SIDPERS-3 types
(declared in the Types packages). The changes required to the
interface layer are discussed in Subsection 2.1.2.

2.1.1 Module Input Migration

The migration of the SQL input modules involves replacing the XDB
SQL Modules with SAMeDL Modules.

2.1.1.1 Approach

The project team quickly completed this step by referring to the
SQL statements in SQL module files for the specific SELECT, UPDATE,
DELETE, and INSERT statements. Also, since only certain tables and
columns are required by the chosen CSUs, the SQL modules provided
the needed information for declaring the domain types and tables in
the SAMeDL Definition and Schema modules. The SAMeDL modules were
submitted to the SAMeDL compiler for generation of the Ada
packages. For the XDB DBMS, the Ada packages generated by the
SAMeDL compiler replace the Database Access files (refer to Figure
2-2) in the SIDPERS-3 model.

7

SAMeDL.TR.10.15 Sep 92

2.1.1.2 Observations

The ease of the SOL to SAMeDL module conversion can be attributed
to the module binding provided by XDB and the layering approach
used by STATISTICA to isolate the database. Had the SIDPERS-3 Team
chosen to use an embedded SQL interface without isolating the
database, the application layer would have required major changes
to migrate to SAMeDL.

2.1.2 Interface Migration

The interface migration involves modifying the interface layer
(refer to Figure 2-1) or Database Support packages (refer to Figure
2-2). The Database Support packages are changed to reference the
SAMeDL modules rather than the Database Access packages generated
by the XDB SQL module compiler.

2.1.2.1 Approach

The interface layer represents a set of Ada packages that provides
the conversion of SQL types to user-defined types specific to the
SIDPERS-3 application. The Database Support packages directly call
the Ada packages generated by the XDB SQL module compiler. The
Database Support packages were modified to interface with the Ada
code generated by the SAMeDL compiler. These packages provide
database control functions such as rollback, commit, open database,
close database, and error handling. Since these functions are
provided in the SAMeDL packages, the functions were removed from
the Database Support packages.

The SIDPERS-3 MMI uses one database table for processing error
messages. A SAMeDL module was written to provide this service, and
the appropriate MMI package was modified and recompiled to
interface with the new SAMeDI module.

2.1.2.2 Observations

The migration to SAMeDL required no modifications to the
application layer. Major changes, however, were required to the
Database Support packages to interface with the SAMeDL modules.

There is a conflict in the manner in which the SAMeDL modules and
the MMI display error messages. The SAMeDL error handling
procedure uses the Text 10 package to output to the screen a
message containing the error code. In contrast, the MMI provides
a standard display of all user messages. To take advantage of the
existing MMI procedure, the SAMeDL error handling procedure could
be modified to call the MMI to display the error message. This
solution, however, creates a circular dependency between the SAMeDL
layer and the MMI, as shown in Figure 2-3.

8

SAMODL.TR.lO.105 Sep 92

Figure 2-3 The Circular Dependency between SAMeDL and MMI

The solution to the circular dependency problem is the creation of
a separate error handling package, as shown in Figure 2-4. Upon
return of the error code, negative SQLCODE, from the database, the
SAMeDL layer calls the error handler in the. Database Errors
package. The error handler uses the function to display user
message provided by the M4I.

FigUre 2-4 The Circular Dependency Solution

9

SAMeDL.TR.10.15 Sep 92

2.1.3 Data Kigration

The database for the SIDPERS-3 Demonstration Prototype contains
approximately 200 tables. Only 34 of these tables are accessed by
the two CSUs in the SAMeDL Pilot Project. Data migration involves
the transfer of the 34 tables to a smaller XDB database. Once the
subset database is created, it can be used for creating and loading
databases in Informix, Oracle, and Sybase.

2.1.3.1 Approach

STATISTICA found most of the table names for the two CSUs in the
SQL modules that were originally written for the SIDPERS-3
Demonstration Prototype. Other tables names, used as lookup tables
or pop-up windows, were found by perusing the Database Access
packages.

An SQL procedure was written using the XDB system tables to
generate the script file automatically to create the tables in a
new XDB database. Another script file was written to create
indexes identical to the original SIDPERS-3 indexes. The two
script files contain standard SQL statements; therefore, they can
be used to create the tables and indexes in the other DBMSs. Once
the tables and indexes were created, the export and import
utilities provided by XDB were used to'move the data to the new
database.

The new database was tested for completeness using the original
SIDPERS-3 Demonstration Prototype. During testing, it was
discovered that the MMI uses a database table to display user
messages. This table was added to the new database.

2.1.3.2 Observations

The primary reason for creating a subset of the SIDPERS-3 database
was to facilitate loading data to Informix, Oracle, and Sybase.
The conversion of the database to these DBMSs will be described in
Subsection 2.2.3.

2.1.4 Test

Testing in the Application Migration subtask focuses on answering
two questions:

1. Is the application correctly converted, retaining all
functionality of the original application?

2. Are there differences in performance between the original
application and the new SAMeDL application?

10

SXMeDL.TR.10.15 Sep 92

2.1.4.1 Test Plan

To test the correctness of the SAMeDL application, the project team
is using the test cases created by the SIDPERS-3 team for the
SIDPERS-3 Demonstration Prototype. The CSU Test Cases are included
in this report as Appendix G. Using the test data in the XDB
database, the project team will execute the test procedures on both
the original application and the SAMeDl application. Any
discrepancies in the SAMeDL application will be noted, corrected,
and retested until the SAMeDL application is functionally equal to
the original, baseline application.

Performance differences between the original application and the
SAMeDL application are measured by recording system clock time at
identical points within each application. The clock time is
captured at the entry/exit to certain procedures and before/after
calls to the database. The process time for a procedure or
database call is calculated as the exit clock time minus the entry
clock time. Each selected procedure is tested repeatedly,
capturing the process time so that the minimum, maximum and average
processing times can be calculated and recorded for each procedure
or database call.

2.1.4.2 Test Results

The project team executed the test procedures contained in the CSU
Test Cases, Appendix G, against the original SIDPERS-3
Demonstration Prototype and the converted SAMeDL application. Each
test case was performed with duplicate results from each
application. The SIDPERS-3 Demonstration Prototype had been
correctly converted to SAMeDL without loss of functionality.

The project team is. experiencing difficulty in measuring
performance differences between the two applications. The smallest
measure of time returned by the Interactive UNIX operating system
is tenths of seconds. This time increment is not granular enough
to show differences in processing time.

One solution is to run a "counting." process in the background while
the Ada application runs in the foreground. However, this approach
failed due to a conflict between the Ada run time and the UNIX
process scheduler. With Alsys, the Ada run time executes as a
separate process on top of the operating system. The conflict is
created when the Ada tasks are scheduled by the Ada run time
independently of the UNIX process scheduler. Since performance
could be a key discriminator for SAMeDL, the project team will
continue to explore other-methods to measure processing time.

11

SAMeDL.TR.10.15 Sep 92

2.2 New Application Development

For the Neu Application Development subtask, STATISTICA will use
the same CSUs listed in Table 2-1. This approach provides a
baseline from which comparisons between methodologies can be made
as to design without functionality differences in the application
layer. In the New Applicaticn Development subtask, STATISTICA will
redesign and re-implement some of the Ada application layer to
analyze the SAMeDL features and to assess the value added using the
SAME methodology.

Further study of the SIDPERS-3 Demonstration Prototype design, as
depicted in Figure 2-2, reveals the following points:

1. The Screens box represents a series of Ada packages, the
design of which is dictated by the MI. The control flow
within the each package is determined by the active
screen name and the key used to exit that screen.
Although tailored for each CSU, these packages rely
heavily on the MI and can be considered part of the MMI.
Since a user interface is usually considered external to,
and separate from, the application, the packages were not
modified to include SAMeDL.

2. The Screens packages are dependent on Field Support
packages for validating user-entered data, retrieving
data from the database for pop-up or help windows, and
storing data in a Data Store for use during later
processing.

3. The Data Stores box represents several package
specifications that declare objects for temporary storage
of values either retrieved from the database or entered
by the user. The data is stored until needed for
reports, validation or calculations. The objects in the
Data Stores are declared as user-defined subtypes found
in the Types packages.

4. The Reports box is also dependent on the MMI for report
utilities; however, the packages in this group contain
procedure calls to retrieve and update data in the
database. The package that calls MI report utilities
for formatting the CSU specific report was not unchanged.

5. The Database Support box represents an interface layer to
the Database Access packages generated by the XDB module
compiler. These packages were modified extensively in
the previous subtask (refer to Section 2.1.2) and,
therefore, require only minor changes.

12

SAMeDL.TR.10.15 Sep 92

2.2.1 Approach

The project team used the following approach to redesign the two
CSUs:

1. Analyze the data requirements to identify objects or
specific data groups. For example, data identifying a
soldier, such as SSN and name, compose a Soldier object.
The data identifying a Unit (i.e. UIC and name) are
attributes of the Unit object.

2. Build SAMeDL domains and support packages around each
object. For each object, a SAMeDL definition module is
written to declare the attribute domain of the object.
A corresponding SAMeDL abstract module is written to
provide all database operations required to use the
object. An example of the definition and abstract
modules written for the Unit object is shown in Figure
2.5.

3. Modify the database schema to represent the real world.
Where appropriate, the project team changed database
columns to allow null values. The project team then
created a SAMeDL schema module to match the new database
schema. An example of the schema module is shown in
Figure 2.6 on page 16.

4. Compile SAMeDL modules. For each definition module, the
SAMeDL compiler generates an Ada specification package
(e.g. UnitDef) in which derived types are declared for
each domain. Additionally, the SAMeDL compiler creates
a set of Ada packages (e.g. Unit Abs specification and
body) for each abstract module. This set of Ada packages
is the abstract interface defined in the SAME
architecture. In the XDB version of the SAMeDL compiler,
a third set of packages (actually generated by the XDB
module compiler) is required to implement the database
calls in the abstract module. This third set of packages
becomes the concrete interface in the SAME architecture.

5. Redesign and modify application layer. The project team
identified several goals in redesigning the application.

a. Replace weaker subtypes in the Types package with
SAMeDL derived types. The objectives of this goal
are to remove the redundant type declarations and
enforce compiler time checks through derived
limited private types.

b. Hide implementation details of the Data Stores by

13

ShM.DL.TR.10.15 Sep 92

dehis ow" UNIT _DP is amr UIC Cws for

domain UC Domain s am 3o QL _CHAR (Lag -> 6); uhtUIC.
domme -K~_om sm SQL _CHAR amg*t - > 60), UNAME
doman UtNhTW _rT•E COormr a am sQL DNT; ftc. UNIT

ordi by UNT.UIC;
-ofc Retard N~ omdooC

read UNITJNPO.RECRD is proder OAftehudUskhfo
UIC :i UCDomahs (W*_SSN4: RemovalDef.SSN Dinahm) is
UNAAGI: UNAbME Dman

ad UNTIýIUPO.ECORD; esho UNrr.UIC,
UNAME

ead UN~rrDEP; oft UNIT DMP: UNUr IPO RECORD
•orw A7rACHIWr. UNT
uhe s(ATrACHMMITJ - W'ihhSm sad

-I-mfrsme UDIP ATrACHhWT.RWSATCH - 'A') md
-1 Arms RIOVAL-DEP UNIT.UIC - AT-rACH••r.UIC;
-tfwe"M. DEMO
wig UNf_ DIP; m UNIT DEP;

iA& REMOVAL -DIP; Proned. Ckt C=NUsk hf
ahwsut models UiT-ASS is (Vih SUN .RemovaDeIJUN Doumai) is

udborim DEMO
akct UNMI.UIC,

tCOUN-- IUCORD is UNAbE
Number: UNITEM COUNT Domem oft UNrY DIFO: UNIT INFORECORD

od, fom CURUA WGNA7T, UNIT
wh. CCURR AMSROATASN - Th Sne a d

pfosedim Coin Unted is UNIT.UIC - CURR ASSIGNMBNT.UIC;

what UNrr FFEM COUNT Domuehm(w)') sa~d UIT ABSS,
b" Nmber•- of ims: COUNT RECORD

from UNIT;

Figure 2-5 Definition and Abstract Modules for Unit Object

encapsulating Data Stores within support packages.
The objective of this goal is to utilize
information hiding and to give the design a more
"object-oriented" flavor.

c. Retain strong data typing up to the point where the
MI controls the data. The objective of this goal

is to process the data using the operations defined
for each data type and take advantage of compiler-
time, rather than run-time, error detection.

The resulting SAMeDL redesign architecture is shown in Figure 2-7.

A comparison of the SIDPERS architecture (refer to Figure 2-2) and
the redesign architecture (shown in Figure 2-7) indicates how the
first two goals of the redesign were met. With the Derived Types
packages generated by the SAMeDL compiler, the previous Types

14

SAX*DL.TIR.10.15 Sep 92

-Ifmdms UNrrF DE
-Wh.ow, lIMOVAL DRP
wA UNra DEI;
wife REMOVALDEP;
wbam mno"s DEMO u

"k 3SOLDR is
33M m w REMOVAL DEFAWI DCM416
NAME -IND R:MVAL. DiWEAbMI DID=Dam.

uM aOR AD REMOVAL -DF.MuRMO.kAD Dm
md SOLDWE

lab. CURR ASSIONM34T is
33N s-a. afMoVALDEZP.SS.Dam@.
UIC UNIT DEP.UIC Doninm

ad CURR ASSIROIF;

U". ArTAOMWT is
3N ow : u'REWOVALD I PJDami6

UIC UNfT DEP.UIC Dom,
R8, ATCH R:M6OVAL-D P.RSNATCHLD=

ad ATrACIHM";

ab" UNIT is
UIC nol =ai UNIT DNP.UICDnh
UNAEU WeTDEPXNAME-DCnsk

ad UNIT;

ad DEMO;

Figure 2-6 Sample Schema Module f or Redesigned Application

packages becomes redundant. The Data Store packages are replaced
with obj ects of SAMeDL derived types declared within the package
bodies of the Field Support packages. Access to the Data Stores is
gained through services (i.e. Getobject, PutObject) already
provided by the Field Support proced'ures. Thes~e procedures are
modified to reference the local objects rather than the objects
declared in external package specifications. The other
functionality provided by the Field Support packages is retained so
that the Screens packages require no modifications.

The project team modified the Database Support package to reference
the procedures in the Abstract Interface (generated from the
abstract modules) rather than the Database Access packages.

The third goal is not as easy to attain. The project team
determined that the point at which the MMI4 controls the data is
just prior to calling the Field Support procedures and prior to
calling report utilities in Reports packages. When the Screens
packages call the Field Support procedures the data value is passed
as a string type. Conversion to derived types is handled by the
Field Support procedures, thus hiding the conversion details and

,,,• u~15

S•h•DL.TR.10.15 Sep 92

Reports Driver Screens f
- -- -

Databaes Abstract Interface Field

SDate
Tyaes St...SupSores

Moduloes Compieer

I* Absrtracbtth

Packages .

edeSOL tConcretej interface.

Modules # I...... ...

C• Ceor- Access /e

L hw egend eisGenerated by theModule Compilter

DBINS # Generated by theE SNsd)L Compi ler

• ,•Shows dependencies

I- ndicates control

flow

Figure 2-7 The SAMeDL Redesign Architecture

16

..

S.JeDL.T..10.15 Sep 92

isolating the calling packages from any future changes to data
types.

2.2.2 Observations

SAMeDL must be the basis for design. Once the database design has
become stable, the SAMeDL modules can be designed and written.
Database stability is the key to the success of implementing
SAMeDL. Because the application layer is built on top of the
SAMeDL data types, any change in the database schema resulting in
a change to SAMeDL types requires modifications to and
recompilation of the application layer.

For example, changing a not null column to a null-bearing column in
the database would require a modification to the corresponding
domain in the SAMeDL definition module. The new definition module
would be recompiled through the SAMeDL compiler, generating a new
Ada specification. The data type generated would become a limited
private type, and some operations (i.e. the Ada ":-" operator) on
the not null type would become invalid.

One solution to this problem is to provide an additional layer of
abstraction between the application and the SAMeDL abstract
interface. In our redesign, the Database and Field Support
packages, in essence, provided this layer. However, the cost of
this solution is additional processing and response time.

The SAME architecture supports an object-based design. The data
requirements of the application were analyzed to identify object
classes or data types that could be grouped into packages. In
addition to conversion functions, Field Support packages were
modified to hide the objects (designated as Data Stores) needed for
temporary storage of data.

SAMeDL is as complex to use as Ada. It is a hybrid of Ada and SQL,
offering the best features of Ada and allowing the user to specify
database services in SQL-like statements. The user must,
therefore, be proficient in both Ada and SQL, while learning a
third programming medium. Program managers must consider training
or learning curve impacts on the development of SAMeDL
applications.

2.2.2.1 Strong Typing

The success of retaining the SAMeDL strong data typing in the
application layer depends on how tightly interleaved the user
interface is with the application design. The design of the
SIDPERS-3 application is dictated by the SIDPERS-3 M4I. As seen in
the first stage of this pilot project, inserting SAMeDL without
modifications to the SIDPERS-3 application proved to be of no

17

SAMeDL.TR.10.15 Sep 92

worth. This was largely due to the interface design where data is
passed as string objects. In the redesign (second stage of the
project), the application layer was modified to use the SAMeDL
derived types. Functions to convert SAMeDL types to string types
were created in the Database and Field Support packages to
accommodate the MMI.

2.2.2.2 Error Handling

Any SQL statement executed by the database has the potential for
failure. Frequently, an application is designed to catch the
predictable errors (e.g. no record found) and forgets to check for
the unpredictable, unrecoverable failures (e.g. disk error). The
SAME methodology handles unexpected errors, while providing a
flexible treatment of database errors that allows the application
to define errors that are acceptable and expected.

The application programmer defines the database errors that are
tolerable in the definition modules by declaring a status map, as
shown in Figure 2-8.

ucxctmo Data Deraiai DossNca EzOt

mumemam Opsm Sius is M(akEno, Deft Coam_ Error,
InvaWidSQL SliMftMi.NaM& tn
OkY);

-wu Operation MapnoWs Rcsult01 OLPetio
UMs Opls"i SUm- s is(
-600.. 6• > Disk- Error,
.500.. -5" u> DaisConvsim Err,
-30.. -499 -> nVAi- SQLStS mn.
-101,-110,-113 w> rais Daw Defmiition Dos Not Ezat,
-25 > raise nPvij,
0 -> Okay,
100 > Nt Fod);

Figure 2-8 Sample Status Map Declaration

As seen in Figure 2-8, the declaration of the status map may
include raise statements that raise exception handlers for those
errors that are unpredictable or unrecoverable. Expected errors
are mapped to members of the enumeration type, OperationStatus.

18

SAMeDL.TR.l0.15 Sep 92

The negative integers are values of the ANSI standard variable,
SQLCODE. The status map provides a direct correlation between the
returned SQLCODE and application-defined error conditions. It
should be noted that the standard specifies only two return values:
0 for "success" and 100 for "row not found." Any other SQLCODE
must be a negative integer and is implementation-defined. In other
words, the negative integers differ between DBMSs, and declaration
of the status map should be isolated for portability reasons.

An application is not required to declare a status map. In this
case, upon return of a database error (negative SQLCODE), the
procedure Process Database Error, declared in package
SQLDatabaseErrorPkg, is -called to raise the exception
SQL_Database Error. The application should provide an error
recovery routine for handling the SQLDatabaseError exception.

2.2.2.3 Null Handling

Declaring domains as null-bearing increased the complexity of
programming the application code, thus decreasing the productivity
of the application programmer. The SAME support packages (e.g.
SQL_Char_Pkg) provided the operations necessary for the limited
private types; however, the application programmer should be
trained on the effective use of the support packages. The
restrictiveness of the limited data type can be circumvented;
however, the reliability and maintainability of the program is
lost.

2.2.3 Multiple Target Databases

Targeting the application across databases required minimal effort
and changes. There are three areas that required modifications:

1. CONNECT statements;

2. Database status map; and

3. The transfer of data from one database to another.

The first area involves modifications to CONNECT statements. As
shown in Figure 2-9, the CONNECT statement is slightly different
across the four databases.

The second area is modifications to the status map declared in the
definition module to handle database errors. As discussed in
Section 2.2.2.2, the status map must be modified to reference the
new DBMS codes, if an application chooses to map application-
defined errors directly to DBMS-specific return codes

19

SAM.DL.TR.10.15 Sep 92

XDB Oracle

CONNECT; CONNECT Us'ID PUmord (USINO Diatas-NameJ;

Informix Sybase

CONNECT DagabauNuM; CONNECT SERVER Saer-Nuns;
CONNECT Doahase Nns;

Figure 2-9 CONNECT Statements

The third area is transferring data from one database to another.
This process involves the following steps:

1. Create the database and table using either SQL scripts or
the appropriate user interface.

2. Export the data from the source database to a format
acceptable to the target database.

3. Import or load the data into the target .database.

The project team created script files that contain standard data
definition language for creating the database, creating tables and
indexes, and granting the correct privileges to user accounts.
Both the Informix and Oracle database provide utilities for loading
data from ASCII files. The use of script files and DBMS-supplied
utilities made the loading of the Informix and Oracles database
easy.

20

S)MeDL.TR.10.15 Sep 92

3.0 TASK 2 - TOOLSET DEVELOPMENT

The purpose of this section is to document the technical activities
associated with the SAMeDL Toolset Development task. This section
is organized as follows:

1. Section 3.1, SAMeDL Module Manager Development, covers
the SAMeDL Module Manager development effort.

2. Section 3.2, SAMeDL Compiler Upgrade, documents the work
associated with upgrading the existing Intermetrics
SAMeDL compiler to support the most current definition of
SAMeDL.

3. Section 3.3, SAMeDL Compiler Retarget, reports on the
technical activities associated with retargeting the
Intermetrics SAMeDL compiler backend to the four
supported DBMSs.

4. Section 3.4, Other Support Tool Development, covers the
effort associated with developing additional tools, if
any, other than the basic compiler and the Module
Manager.

3.1 SAMeDL Module Manager Development

3.1.1 Design

Intermetrics successfully performed initial prototyping work on the
Sun4 as a feasibility study for the SAMeDL Module Manager design.
The top level design document is incorporated into this technical
report as Appendix B. The objective of the Module Manager is to
provide the user with reasonable management of the written SAMeDL
modules and the Ada interfaces generated by SAMeDL. The Module
Manager implementation will be simple, and as portable as possible.

From the user's point of view, the interface is line oriented (like
Verdix). Functionality includes library creation/ deletion, SAMeDL
information listings (i.e., time/date of compilation, dependencies,
associated host files for input source code and generated
interfaces), and Ada compilation ordering information for the
generated Ada interfaces. A programming interface has been
developed for use by the SAMeDL compiler to aid in separate
compilation and information retrieval/generation from/to the
library.

Time and resources permitting, Intermetrics will add "nice to have"
features discovered during testing. These features or
modifications fall under two categories:

21

SAMeDL.TR.10.15 Sep 92

1. Information Presentation. The way library information is
presented to the user may be enhanced.

2. Convenience. Intermetrics may add functions that
automate user activities based on information already
managed and available. For example, archives could be
generated from the created object files (where concrete
interfaces take the form of C/ESQl). Additionally, shell
scripts could be created that automate the compilation of
the generated Ada packages.

3.1.2 Code

Intermetrics has developed and integrated the Module Manager into
the SAMeDL compiler. The foundation for this work is heavily based
on the prototype of the Module Manager developed by Intermetrics
during the design phase. The Module Manager is written in Ada and
developed on a Sun4 workstation using the Verdix Ada Development
System (VADS). Following initial testing on the Sun4, the Module
Manager has been successfully ported to the 386 computer under
Interactive UNIX and the Alsys compiler.

3.1.3 Test

Intermetrics performed initial testing of the Module Manager on
both the Sun4 and the 386 computer. With respect to the compiler
interface, SAMeDL modules with miscellaneous interdependencies were
successfully processed by the compiler. The related information
generated by the Module Manager for the library was then manually
examined, either through the debugger or by the Module Manager user
interface. To test the user interface functions, SAMeDL modules
and related generated interfaces were entered into a SAMeDL
library. The user commands were successfully tested using various
combinations of options and parameters.

Informal testing will continue on the Module Manager as part of the
development and testing of the SAMeDL compiler.

3.2 SAMeDL Compiler Upgrade

3.2.1 Design

The SAMeDL compilers were developed by Intermetrics from an
existing compiler. The original compiler was targeted to the
October 1991 version of SAMeDL. The SAMeDL compilers for the Pilot
Project are targeted to the November 1991 version of the language,
developed primarily at SEI.
An incremental approach was taken to upgrade the SAMeDL compiler
from the October to the November version of the language. The

22

SAMeDL.TR.10.15 Sep 92

additional features were partitioned into three logical sets. The
first set of upgrades was implemented for the delivery of the
Informix SAMeDL compiler. The second compiler was implemented for
XDB and included both the first and second sets of upgrades. The
Oracle and Sybase SAMeDL compilers implemented the full November
1991 version of the language.

The incremental approach to upgrading the SAMeDL compiler was
advantageous to both the Shadow Task and the toolset development
task of the Pilot Project. From the point of view of the Shadow
Task, the incremental upgrades meant that the first SAMeDL SDE
delivery could be made soon after contract award, enabling
STATISTICA to start using the SAMeDL toolset as early as possible.
By maximizing the time STATISTICA had to use the toolsets, the
feedback to Intermetrics was integrated into subsequent compilers,
resulting in a better set of SDEs for the final delivery.

3.2.2 Code

Coding of the SAMeDL compiler front-end upgrades is performed on a
Sun4 with a Verdix Ada compiler. Once the upgraded code is tested
on this development platform, the improved compiler is ported and
tested on the delivery platform. Compiler back-end improvements
and DBMS retargeting is performed on the Sun4 development platform
and then ported to the delivery platform to test using the target
DBMSs. Use of the Sun4 development platform and the PC-386
delivery platform in this way enables both front-end and back-end
upgrades to be performed simultaneously.

All source code, including the SAMeDL compiler source code, the
Module Manager source code, and the SAMeDL standard packages is
maintained in a central repository on the Sun4 platform under
strict configuration management policies. At delivery time, the
configuration management system registers a release of the current
code, which is used to build the delivery executables.

3.2.3 Test

Acceptance testing of the SAMeDL compiler is based on the SAMeDL
Development Environment Test Plan and Intermetrics' version of the
SAMeDL Language Reference Manual (ILRM). The Test Plan is
incorporated in the technical report as Appendix C. The ILRM is
incorporated as Appendix D. The Test Plan contains procedures for
testing the Module Manager and source code for the compiler test
suite. A cross reference of test procedures to ILRM sections is
provided in Chapter 4 of the Test Plan.

Testing of the SAMeDL compiler is divided into three basic types:

23

SAMeDL.TR.10.15 Sep 92

1. Correct Tests. This set of test procedures verifies that
the SAMeDL compiler recognizes and processes proper
syntactical and semantic constructs. Proper syntactical
and semantic constructs are defined by the ILRM.

2. End-To-End Tests. This set of test procedures verifies
that the output of the SAMeDL compiler functionally (as
defined by the ILRM) interfaces with the target database.

3. Error Tests. This set of test procedures verifies that
the SAMeDL compiler identifies improper syntactical and
semantic constructs (as defined by the ILRM) as errors.

3.3 SAMeDL Compiler Retargets

Once upgraded, the SAMeDL compiler will be retargeted to four
DBMSs: Informix, XDB, Oracle, and Sybase. To prioritize the
compiler retargets, Intermetrics:

1. Identified commonality across the programming interfaces
provided by each DBMS vendor. Informix, Oracle, and
Sybase have a standard C with embedded SQL (C/ESQL)
programming interface. XDB has an Ada/SQL module
language interface, and does not provide the C/ESQL.
Since C/ESQL is the interfacing technique currently used
in Intermetrics compiler, Intermetrics will retarget one
of the three DBMSs that generates C/ESQL for the concrete
interface. Once this is done, the other two DBMS can be
retargeted quickly.

2. Targeted the DBMSs that are most widely used to promote
use and broad availability of SAMeDL across the Ada
community. XDB is a product primarily used by the Army;
the remaining three DBMSs are commercial products that
are widely available to academia, government, and
industry.

Using the above rationale, it is clear that the DBMSs can be
partitioned into two distinct groups:

1. Group A - Informix, Oracle and Sybase

2. Group B - XDB.

If Intermetrics implements one DBMS from each group first, it is
reasonable to assume that the SAMeDL compiler can be retargeted to
all four DBMSs. Intermetrics will retarget the SAMeDL compiler for
Informix first, followed by XDB, and then either Oracle or Sybase.

24

ShMeDL.TR.10.15 Sep 92

3.3.1 Infomix

The front-end upgrade and back-end retarget of the SAMeDL compiler
to the Informix DBMS proceeded smoothly through its completion and
delivery on March 13, 1992 to STATISTICA. The Informix DBMS
provides a stable and reasonably complete C/ESQL interface. Thus,
a minimal number of extensions to SAMeDL were needed to provide a
satisfactory SQL interface to Informix.

The SAMeDI compiler currently implements all of the SAMeDL
capabilities described in Appendix D, SAMeDL Language Reference
Manual.

3.3.2 XDB

The SAMeDL compiler targeted to the XDB/PC-386 platform was
delivered to STATISTICA on May 7, 1992. Several differences
between Informix and XDB contributed to making the retarget to XDB
more technically challenging than the Informix retarget.

The Computer Associates XDB DBMS provides an SQL-Ada module
compiler. The SQL-Ada module compiler was chosen as a back-end
target for the SAMeDL compiler for XDB. The modification of the
compiler back-end from the embedded C/SQL architecture to the SQL-
Ada module compiler went relatively well considering the magnitude
of the change.

Early in the retargeting process, Intermetrics discovered software
problems in the XDB SQL-Ada module compiler that would
significantly limit the functionality of the XDB SAMeDL compiler.
The most severe problems were corrected by Computer Associates.
Some problems involve lack of conformance to SQL and SQL module
language standards, as defined by FIPS PUB 127-1. Workarounds to
these conformance problems are suggested in Appendix F, SAMeDL User
Manuals. When workarounds were not appropriate, Intermetrics added
semantic checks to the SAMeDL compiler to warn users that certain
features of the language are not adequately supported by XDB.

The XDB SAMeDL compiler implements all of the SAMeDL language
described in Appendix D, SAMeDL Language Reference Manual.

3.3.3 Sybase

The Sybase SAMeDL compiler targeted to the Sun/Sparc platform was
delivered on July 7, 1992 to STATISTICA. The Sybase SAMeDL
compiler is targeting a hardware/software platform that is
different from the platform for the Informix and XDB SAMeDL
compilers. Also, the SDE for Sybase is the first delivery to
support a complete front-end compatible with the November 1991
version of the SAMeDL LRM (5).

25

SAMeDL.TR.10.15 Sep 92

As the time to commence the Sybase retarget effort approached,
Intermetrics discovered that Sybase no longer provides a C/ESQL
product for the PC-386 platform. The decision to use a Sun/Sparc
platform for the Sybase SDE was made for three major reasons:

1. Intermetrics has a Sun/Sparc platform at their facility
on which they could do the work, and to which they could
provide STATISTICA access in support of the Shadow Task.

2. Sybase provides a C/ESQL product for the Sun/Sparc
platform.

3. Intermetrics felt that use of this platform would enable
the contract to proceed on schedule, whereas choosing an
alternative compiler architecture or DBMS might not.

The full configuration for the Sybase SDE consists of a Sun/Sparc
machine running SunOS 4.1.1, the Verdix Ada Compiler Version 6.0.3c
and the Sybase DBMS Version 4.8 with C/ESQL.

The Sybase retarget proceeded smoothly, with only minor problems
discovered in using the Sybase DBMS. Sybase restricts the use of
a cursor update statement to several qualifications, such as having
a unique index on the table column to be updated. Consequently,
attempting to use the cursor update statement without meeting the
Sybase prerequisites will result in a Sybase error either at run-
time or during the final phase of compilation by the Sybase C/ESQL
precompiler. Intermetrics reported this problem to the Sybase
technical support staff.

To be compatible with the new platform, some co~mmands generated by
the Module Manager had to be altered. For example, the
sde.mkscript commands were changed to emit a script compatible with
the Verdix Ada compiler. The changes to the Module Manager were
minor and were documented in the Sybase SDE User Manual.

The complete front-end supports all features of SAMeDL, including
user-defined base domains. Some of the new capabilities of the
Sybase SAMeDL compiler differ from the SAMeDL defined in the
November 1991 version of the LRM. The correct use of all SAMeDL
features, as implemented by Intermetrics, is found in Appendix D.
Further clarification of implementation-dependent features is found
in the Sybase SDE User Manual, in Appendix F.

3.3.4 Oracle

Intermetrics delivered the SAMeDL compiler targeted to the
Oracle/PC-386 platform on August 7, 1992 to STATISTICA.
Intermetrics produced the Oracle SAMeDL SDE during 1 month of
intense activity.

26

SAMeDL.TR.10.15 Sep 92

The first three deliveries, with accumulative front-end upgrades,
were performed during 2-month intervals. The Oracle SDE required
no front-end upgrade and was purely a retarget. The inherent
portability of the SAMeDL compiler architecture enabled this
retarget to be performed in one-half the time of the earlier
retargets. In addition to the actual retarget, the 1-month time
included updating the documentation and packaging the media.

One reason that the SDE for Oracle was built so quickly is that the
Oracle DBMS has few program errors. The only SAMeDL feature not
supported by Oracle is the null-bearing host variable in the SQL
where clause. This implementation-dependent feature is documented
in the Oracle SDE User Manual, in Appendix F.

3.4 Other Support Tool Development

Intermetrics recently identified two tools that may serve as an aid
to the Shadow Task:

1. A SAMeDL Language Sensitive Editor (LSE).

2. A SAMeDL syntax checker.

Intermetrics implemented an early version of the LSE for the Sun4
based on the October 1990 SAMeDL Language Reference Manual. An
effort will be made to upgrade and port the LSE to the 386
computer. The LSE utilizes emacs with appropriate e-lisp bindings
based on the SAMeDL grammar.

The syntax checker will be incorporated into the SAMeDL compiler.
Until a completed SAMeDL compiler is available, the syntax checker
will help in the early development of the Shadow Task.

27

SM(.DL.TR.1O.1.5 Sep 92

APPENDIX A

Aaronyms and Bibliography

A-i

SAMeDL.TR.lO.15 Sep 92

ACRO•r

AIRMICS Army Institute for Research in Management
Information, Communication and Computer Science

AJPO Ada Joint Program Office

ANSI American National Standards Institute

APSE Ada Programming Support Environment

ATIP Ada Technology Insertion Program

COTS Commercial Off The Shelf

CSU Computer Software Unit

C/ESQL C with embedded SQL

DBMS Database Management System

DoD Department of Defense

ILRM Intermetrics' SAMeDL Language Reference Manual

LOC Lines of Code

LRM Language Reference Manual

LSE Language Sensitive Editor

MIS Management Information System

MMI Man Machine Interface

SAME SQL Ada Module Extensions

SAMeDL SQL Ada Module Description Language

SEI Software Engineering Institute

SIDPERS-3 Standard Installation Division Personnel System -

Third Release

STAMIS Standard Army Management Information System

VADS Verdix Ada Development System

A-2

ShOe'nL.Tl.10.15 Sep 92

BIBLIOGRAPEY

[1] Database Language - SQL with Integrity Enhancements. American
National Standards Institute, X3.135-1989.

[2] Database Language - Embedded SQL. American National Standards
Institute, X3.168-1989.

[3] Graham, Marc H., "Down in the Details, Lessons Learned in
Interfacing Ada and SQL." ACM Tri-Ada '90 Conference,
Baltimore, MD, December 1990.

[4] Graham, Marc H., "Guidelines for the Use of the SAME."
Software Engineering Institute, CMLI/SEI-89-TR-16.

[5] Graham, Marc H., "SQL Ada Module Description Language,
Intermediate Version 3." 21 November 1991.

[6] LeClair, Allison and Susan Phillips, "A Prototype
Implementation of the SQL Ada Module Extension (SAMe) Method."
ACM Tri-Ada '90 Conference, Baltimore, MD, December 1990.

[7] Reference Manual for the Ada Programming Language. Ada Joint
Program Office, 1983.

A-3

BhKeDL.TR.1O.15 Sop 92

APPmqDIx B

SAheDL Development Znvironnmt
Module Manager Top Level DeS ±gn

B-1

SAMeDL Development Environment
Module Manager Top Level Design

Intwniecs. Inc.
6-January- 1992
IR-VA-008- 1

Published by
Intermetrics, Inc.

733 Concord Avenue, Cambridge, Massachusetts 02138

Copyright (c) 1992 by Intermetrics, Inc.

This material may be reproduced by or for the U.S. Government pursuant to the copyright License
under the clause at DFARS 252.227-7013 (Oct. 1988).

Table Of Contents

Chapter I Purpose -----------------------...... - 1

Chapter 2 Overview 2
Chapter 3 Data Structures -..... 5

3.1 Physical File Structure .. 5
3.2 Internal Representation .. 5
3.3 Data Format ... 6

Chapter 4 Operations ..------ 7
4.1 Operations on Disk File .. 7
4.2 Operations on Internal Representation ... 7

Chapter 5 Module Manager Files 8---- - -------- 8

Chapter 6 User Interface 9

Appendix A Package Specifications .. ----- 10

Appendix B Module Manager Commands................. ...------- 21

SAMeDL Development Environment - Module Manager Top Level Design

Chapter 1 Purpose
The purpose of this document is to describe the module manager for the SAMeDL Development
Environment (SDE). A top level description of the SDE module manager will be provided, as
well as descriptions of the user-SDE interface and the compiler-SDE interface.

The remainder of this document is organized as follows:

* Chapter 2, Overview, gives a brief overview of the SDE Module Manager.

0 Chapter 3, Data Structures, outlines the physical disk data representation, internal
representation and the data format.

Chapter 4, Operations, documents the supported operations on the disk file and the
internal representation.

* Chapter 5, Module Manager Files, lists the files present in the SDE Module
Manager.

* Chapter 6, User Tntereface, documents the user interface commands for the user to
interact with the SDE Module Manager.

* Appendix A, Package Specifications, presents the Ada package specifications for the
interface routines and the definitions of the data sructucres.

0 Appendix B, Module Manager Commands, includes manual pages for the user
interface routines.

Intermetrics, Inc. 1

SAMeDL Development Environment - Module Manager Top Level Design

Chapter 2 Overview
The SDE module manager maintains the current dependency information for a SAMeDL design
in a library; thus it is similar to an Ada library manager. The SDE module manager also acts as
the manager of the repository (the library) for the SAMeDL source files containing the units and
the files generated by the SAMeDL compilation.

The SDE module manager provides functionality to interact with both the user and the SAMeDL
compiler. The compiler SDE-interface is in the form of procedure calls in the Ada programming
language that the compiler can use, and the user SDE-interface is in the form of commands the
user can type at the operating system prompt to execute various procedures. Operations the user
might perform, for example, would be the creation and deletion of the SDE library, the
generation of lists of units/files in the library, etc. The compiler would use SDE routines to add
new information to the library as it compiles units, to extract dependency information about
units, etc.

In a typical scenario, the SDE library is created by the user with the appropriate user interface
command. Subsequent compilation of SAMeDL units modifies the library via the SAMeDL
compiler SDE-interface. The user then uses other user SDE-interface commands to get
information out of the library as Cell as modify the information present in it.

At the start of a SAMeDL compilation for a unit, the SDE data file is read into the compiler's
internal data structures. Functions provided by the SDE module manager are used to perform
this step. The use of internal data structures facilitates the quick retrieval of dependency
information as well as the storing of new dependency information.

The internal representation of the library is tree-like, with each node in the tree corresponding to
a file in the SDE library and containing information such as the file dependencies, creation time,
related library files, etc. During compilation, new nodes may be added to this internal tree and
new dependency arcs created to connect these nodes to previously existing nodes. The internal
data structures are written to the SDE data file from the compiler at the end of each compilation
using additional functions provided by the SDE module manager.

For example, consider the following SAMeDL code outlined below in Example 1.

2 Intermerrics, Inc.

SAMeDL Development Environment - Module Manager Top Level Design

definition module D Is

end D;

with D; use 0;
schema module S Is

end S;

with D; use D;
abstract module A Is

authorization S

end A;

Example 1. SAMeDL Source Example.

The example contains a SAMeDL Definition Module D, a SAMeDL Schema Module S and a
SAMeDL Abstract Module A. The compilation of the definition module D generates an Ada
package specification named D_.a, the compilation of the schema module S generates no new
files and the compilation of the abstract module A generates an Ada package specification named
A_.a, an Ada package body named A.a, an embedded C/SQL source file A.ec, and then
eventually, an expanded C file A.c and an object code file A.o. The library would like Figure 1
after the compilation is finished.

Intermetrics, Inc. 3

SAMeDL Dev'lopmenr Environment - Module Manager Top Level Design

~~~~~~~~Node Nmbr umer 0oeNme Nd ub

Un. :it Nae oe uber Cre Aboute Cbtartued AbotB

~~~~~Node Numbers) ( oeNbr -JNode Number:s)

ada package specA. edCSQ ~ D_.a~ 1 0be None A
sohem Nmodule S 2oo 0ubr 3 oeNmýý;Nd ubr

Ad& Package Body A.& Nn

ebddefiiinmdul C/SQLNAoee613,Non
exapandaed sAc 7 3 None

bjec pcodge b~od 8 ~ 3 None

Figure 1. State of SDE Library After Compilation of Example 1.

4 Intermetrics, Inc.

SAMeDL Development Environment - Module Manager Top Level Design

Chapter 3 Data Structures
The abstract data structure used by the SDE is tree-like, with each node on the tree corresponding
to a SAMeDL unit or to a generated source file. Each node contains information about its
dependencies on other nodes, the time it was created, the type of node, the related files, etc. This
data structure is saved in a physical file in the library and also has an internal image that is used
by the compiler and the user interface routines.

3.1 Physical File Structure

The physical file contains a series of records, each record containing the data for a single node in
the internal representation of the dependency tree. The information in the disk file is in text
format, that can be read/written using routines provided by the SDE module manager. File
names for the files that the compiler generates are created using character prefixes and index
numbers that are also saved in the disk data file.

3.2 Internal Representation

The internal representation.of the dependency information is tree-like. Each node in the tree
represents a file in the SAMeDL system, and has information about all nodes that are dependent
on it and nodes that it depends on (called CaredAboutBy and CaredAbout arcs respectively).
Each node also contains the time it was created, the external source file it was created from, the
name of the source file saved in the library and the name of the library file that the generated
code resides in.

Nodes are given a node numbers that uniquely identify them. This practice facilitates saving the
tree to the designated disk file and reading it back because pointers do not need to be included in
the disk file. It also facilitates the use of uniform data structures for the internal representation
because variable length records do not need to be used. Instead, lists are maintained off each
node that contain the node numbers of the nodes that the node depends upon, or is dependent
upon.

!ntermerrics, Inc. 5

SAMeDL Development Environment - 4loduie Manager Top Level Design

3.3 Data Format

Both the records in the disk data file and the nodes in the internal representation have the same
fields. The fields are:

Node Number number of the node that specifies the unit

Node Type the type of file this node points to

Unit Name name of the compiled unit

Time Entered time the unit was entered into the library

Library File name of file saved in library

External File pathname of file that the node was generated from

Cares About Arc Num number of cares about arcs from this node

Cares About Arc List list of cares about arcs from this node

Cared About By Arc Num number of care about arcs to this node

Cared About By Arc List list of care about arcs to this node

The records in the disk data file are written out in text form, one after the other with a special
character separating each node. The disk data file also contains the current suffix numbers for the
different types of files present in the library (described in Chapter 6).

In the internal representation, each nodq corresponds to a single record in the disk data file. New
nodes may also be added during compilation by the SAMeDL compiler and their format is the
same.

6 Intermetrics, Inc.

"SAMeDL Development Environment. Module Manager Top Level Design

Chapter 4 Operations
This sew-tion describes the operations that are available to the compiler and the user interface
programs for interacting with the two data representations (disk file, internal tree representation)
that comprise the module manager.

All the procedures described below return a status variable signifying whether the procedure
succeeded or failed. This parameter will not be explicitly mentioned below.

4.1 Operations on Disk File

The disk file that the data resides in is a pure text file, a format that can be changed easily if the
current format is too cumbersome for the executable programs. When any process (compiler,
user-interface program) communicates with the module manager, the library has to be locked.
This locking prevents other instances of the SAMeDL executables that modify the library from
modifying the data structures in use by the current SAMeDL process that has locked the library
data file. The disk file is then read into the internal representation at the request of the current
SAMeDL process that is modifying/reading the library, and then eventually written out after the
process is done with its work, The library has to be unlocked before any other SAMeDL process
may access the module manager library.

The syntax of the operations, including the names, parameters, errors generated, etc. may be
found in the package specification for the package Disk_10 in Appendix A.

4.2 Operations on Internal Representation

The internal representation is a structure containing the nodes corresponding to the files in the
SDE module manager library. The nodes are in the form of a tree, each node containing pointers
to all nodes that it depends upon as well as pointers to nodes that depend upon it. Operations are
provided to add nodes to this tree, create arcs connecting nodes, deleting nodes from the tree and
walking the tree in breadth-first and depth-first fashion.

The operations for the manipulation of the internal representation are distributed over two
packages. The first is the package NodesPackage that contains the lower level operations that
can be done on individual nodes. The other is the package Tree Package that contains the
operations that can be done on groups of nodes as they are connected. The syntax of the
operations, including the names, parameters, errors generated, etc. may be found in the package
specifications for these two packages in Appendix A.

Intermetrics, Inc. 7

SAMeDL Development Environment - Module Manaver Top levol Design

Chapter 5 Module Manager Files
The file names in the following are Unix operating system dependent but can be changed easily

for other operating ;ystems.

The SAMeDL library contains the following files in it:

samedl.lib directory of SDE module manager library

samedl.dat file name of net data file

samedil.iock lock file for SDE module manager library

It also contains the files that are generated by the SAMeDL compiler during the compilation of
units. The filenames are in the following format where xxxxxxx corresponds to a number that is
saved in the SDE module manager disk data file and is incremented each time a new file of a
type is created. The number for each type of file is maintained independent of the others. The
numbers may not be reused.

The first three files (Dxxxxxxx, Sxxxxxxx, Axxxxxxx) contain the modules that are extracted by
the SAMeDL compiler from the user specified source file that is being compiled. They are pure
text copies of the source, but only contain the module specified unlike the user specified file that
inay contain multiple SAMeDL modules in it.

The following files are saved. in the module manager library:

Dxxxxxxx source file for definition module

Sxxxxxxx source file for schema module

Axxxxxxx source file for abstract module

PxxxxxxX source file for Ada package specification

Bxxxxxxx source file for Ada package body

Exxxxxxx source file for embedded C file

Cxxxxxxx source file for C file

Oxxxxxxx object file

8 Intermerrics, Inc.

SAMeDL Development Environment - Module Manager Top Level Design

Chapter 6 User Interface

The user interface command names are Unix operating system dependent but can be changed
easily. Further information about the command line options, arguments, defaults, and errors for
the commands may be found in Appendix B.

sde.cleanlib reinitialize library directory

sde.creatlib creates a new SAMeDL library

sde.list list units generated from a module

sde.Js list compiled units

sde.rm remove a SAMeDL source file or unit from a library

sde.rmnlib remove a SAMeDL library

Intermetrics, Inc. 9

SAMeDL Development Environment - Module ManaRer Top Level Design

Appendix A Package Specifications
The Ada package specifications for the SDE module manager follows:

- globals...a-

contains the global constant declarations required
- throughout the module manager

package Global_Package is

- Status Codes returned by functions/procedures
type StatusType is (StatusOk, StatusError);

Dir.Separator : constant String :- T/;

LibraryDir : constant String :- "samedl.lbo;
Database-File : constant String :" samedl.dat";
LockFile constant String :a samedl.lock";
CurrentLlibrary constant String.:. ";

RM_Command : constant String :O rm -if;

end GlobalPackage;

10 Intermetrics, Inc.

SAMeDL Development Environment Module Manager Top Level Design

- The disk file that the data resides inis a pure text file. When any
- process (compiler, user-interface process) communicates with the
- module manager, the library has to be locked to other instances of
- the processes. This locking prevents the other processes from
- modifying the data structures in use by the process already in the
- library. The locking and unlocking of the library is done using the
- procedures in this package. The disk file is read into the internal
- structures using the procedures in this package.

with GlobaLPackage; use GlobalPackage; - Global types, constants
with NodesPackage; use Nodes4Package; - Types, constants

package DiskjO is

- LockLibrary(Status, LibraryPath) - creates a lock file in the
- library if one does not already exist thereby prohibiting two
- people from modifying the library at the same time. This should
- be done at the very start o-processing a unit in the compiler.

- Parameters:
- Status - StatusOk if the procedure succeeds, StatusError otherwise
- LibraryPath - pathname of the directory in which the module manager
- saves the data file.

procedure LockUbrary(
Status : in out StatusType;
LibraryPath : in String);

- UnlockUbrary(Status) - delete the lock file opened by Lockl-brary.
- Frees the library for use by other users. This is the last thing
- that the compiler should do. No more modifications to the library
- are allowed after an UnlockLibrary call without doing another
- LockLibrary call.

- Parameters:
- Status - StatusOk if the procedure succeeds, StatusError otherwise

procedure Unlockl.ibrary(
Status : in out StatusType);

- ReadNodeFromKeyboard(Status, Node) - reads a node from screen,
- For debugging purposes.

- Parameters:
- Status - StatusOk if the procedure succeeds, StatusError otherwise
- Node - pointer to the node read in from the keyboard.

procedure ReadNodeFromKeyboard(
Status : in out. StatusType:

Intermetrics, Inc. U

SAMeDL Development Environment - Module Manager Top Level Design

Node : in out NodePtr);

-- WriteNodeToScreen(Status, Node) - Writes a node to screen,
For debugging purposes.

- Parameters:
- Status - StatusOk if the procedure succeeds, StatusError otherwise
- Node - pointer to the node to be printed on the screen.

procedure WriteNodeToScreen(
Status in out StatusType;
Node :in NodePtr);

- ReadDiskData(Status, LibraryPath, Trie) - reads the disk data file
- in the directory specified by IibraryPath into a tree and makes Tree
- point to it.

- Parameters:
- Status - StatusOk if the procedure succeeds, StatusError otherwise
- LUbraryPath - path for the directory in which the module manager
- saves the disk data file. -
- Tree - pointer to the root of the new tree created from reading
- the data in the disk data file.

procedure ReadDiskData(
Status : in out StatusType;
UIbraryPath : in String;
Tree in out NodePtr);

- WriteDiskData(StatUs, Tree, LibraryPath) - writes the tree pointed
- to by Tree to the data disk file in the directory specified by
- LibraryPath after first making a copy if disk data file already exists
- in the module manager library directory specified by LibraryPath.

procedure WriteDiskData(
Status in out StatusType;
Tree in NodePtr,
LibraryPath :in String);

end Disk_1O;

12 Intermerrics, Inc.

SAMeDL Development Envitonment - Module Manager Top Level DesiRn

- nodes.a

The internal representation is a structure corn.aining nodes corresponding
- to the files in the module manager library directory. The node type is
- declared in this package, the fields contain the information corresponding
- to each file in the module manager library. The operations that manipulate
- the fields in the nodes are declared in this package. The variables that
- contain the current number suffixes for each kind of file in the library
- are also maintained in this package.

with GlobaLPackage; use GlobalPackage; - Global types, constants.

with Calendar; - for Time type.

package Nodes-Package is

- Node Kinds available
type NodeKind is (DefModule, SchemaModule, AbsModule, AdaPack,

AdaPackBody, EmbeddedC, CSource, ObjectFile);

- Pointer to strings used in the nodes.
type StringPtr is access String;

- CaresAbout node for the nodes that a node cares about (depends upon)
type CaresAboutElement;
type CaresAboutPtr is access CaresAboutElement;
type CaresAboutElement is

record
Previous : CaresAboutPtr; - pointer to previous node in list
Next : CaresAboutPtr; - pointer to next node in list
NodeNumber : Integer; - NodeNumber of node cared about by

- the node that has this in its
- cares about list.

end record;

- CaredAboutBy node for the nodes that a node is cared about by (dependent
- upon).

type CaredAboutByElement;
type CaredAboutByPtr is access CaredAboutByElement;
type CaredAboutByElement is

record
Previous CaredAboutByPtr;, - pointer to previous node in list
Next CaredAboutByPtr; - pointer to next node in list
NodeNumber Integer; - NodeNumber of node that cares

- about the node that has this in
- its cared about by list.

end record;

- Node that is kept in a tree and in the external (physical) disk data file.
type NodeElement;

Intermerrics, Inc. 13

SAMeDL Development Environment - Module Manager Top Level Design

type NodePtr is access NodeElement;
type NodeElement is

record
Previous NodePtr; - pointer to previous node in list
Next NodePtr; - pointer to next node in list
NodeNumber Integer; -- Node number (unique) of node
Kind NodeKind; - Kind of node
Outdated Boolean; - True if node is outdated, else False
UnitName StringPtr. - Unit Name of the unit that the node

- was compiled from.
LbraryFile StringPtr; -- File name of the file in the module

- manager library that contains the
- source text for the unit.

ExtemalFile StringPtr; - File name of the source text file
- that the unit for this node was
- compiled from.

TimeEntered Calendar.Time; - Time the node was created.
NumCaresAbout Integer; - Number of nodes this node cares

- about.
CaresAbout CaresAboutPtr; - List of nodes this node cares

- about.
NumCaredAboutBy Integer; - Number of nodes this node is cared

- - about by.
CaredAboutBy CaredAboutByPtr; -- List of nodes this node is

- cared about by.
end record;

- Initialized when the database is read from the disk, incremented
- each time a new node is created.
NextAvailNodeNumber Integer:

- The suffixes are initialized when the database is read from the
- disk. The file name for a kind is generated by a concatenation
- of the prefix and the suffix and the suffix is incremented.
DefinitionModule_Prefix constant String : "D";
DefinitionModule_Suffix Integer;
SchemaModulePrefix constant String :l "S";
SchemaModule_Suffix Integer;
AbstractModulePrefix constant String .1 "A";
AbstractModuleSuffix Integer; .
Adra_PackagePrefix constant String :- "P";
AdaPackageSuffix Integer;
Ada_PackageBody_Prefix constant String "= "B";
AdaPackageBodySuffix Integer;
Embedded_C_PrefL- • constant String := "E";
EmbeddedCSuffix Integer;
C_SourcePrefix constant String :- "C";
C_.,Source Suffix Integer;
ObjectFile.Prefix constant String "= "0';

14 Intermerrics, Inc.

SAMeDL Development Environment - Module Manager Top Level Design

ObjectFieSuffix :Integer;

- CreateNode(Status. Node, Kind, UnitName, ExternalFile) - creates a
- new node and initializes the NodeNumber, Kind, UnitName and ExtemalFile
- fields in the node.

- Parameters:
- Status - StatusOk iN the procedure succeeds, StatusError otherwise.
- Node - pointer to the newly created node.
- Kind - the Kind of node to be created
- UnitName - the name of the unit for which the node is to be created.
- ExtemalFile - the external file name of the file from which the
- unit is being compiled.

procedure CreateNode(
Status : in out StatusType;
Node : out NodePtr;
Kind : in NodeKind;
UnitName : in String;
ExternalFile : in String);

- Empty (L) return Boolean - returns True or False depending on whether
- the list passed in is empty or not., This is an overloaded function.
- and takes lists of three types: CaresAboutPtr, CaredAboutByPtr, and
- NodePtr.

- Parameters:

- L - pointer to the head of the list.

function Empty (L : in CaresAboutPtr) return Boolean;

function Empty (L : in CaredAboutByPtr) return Boolean;

function Empty (L : in NodePtr) return Boolean;

- Append (Status, Node, List) - appends Node to the List of nodes
- passed in. This is an overloaded function, and takes Node and List
- of the following types: CaresAboutPtr, CaredAboutByPtr, NodePtr.

- Parameters:
- Status - StatusOk if the procedure succeeds, StatusError otherwise.
- Node - pointer to the node to be appended.
-- List - pointer to the head of the list of nodes.

procedure Append
Status : in out StatusType;
Node : in CaresAboutPtr,
List : in out CaresAboutPtr);

procedure Append (
Status : in out StatusType;
Node :in CaredAboutByPtr,
List: in out CaredAboutByPtr);

procedure Append

Intermetrics, Inc. 15

SAMeDL Development Environment - Module Manager Top Level Design

Status : in out StatusType:
Node in NodePtr;
List : in out NodePtr);

- Delete (Status, Node, List) - deletes Node from the List passed in.
- This is an overloaded function and takes Node and List of the following

types: CaresAboutPtr, CaredAboutByPtr, and NodePtr.

- Parameters:
- Status - StatusOk if the Delete succeeds, StatusError otherwise.
- Node - pointer to the node to be deleted from List
- List - pointer to the head of the list of nodes from which to
- delete the node.

procedure Delete
Status : in out StatusType;
Node : in CaresAboutPtr,
List : in out CaresAboutPtr);

procedure Delete (
Status : in out StatusType;
Node : in CaredAboutByPtr;-
List : in out CaredAboutByPtr);

procedure Delete (
Status : in out StatusType;
Node : in NodePtr;
List : in out NodePtr);

- CopyNode(Status, Node, NewNode) - returns a copy of the node passed
- in. The next and the prev fields of the copied node are set to null.

- Parameters:
- Status - StatusOk if CopyNode succeeds, StatusError otherwise.
- Node - pointer to the node to be copied.
- NewNode - pointer to a new node that is a copy of the node passed
- in.

procedure CopyNode(
Status : in out StatusType:
Node :in NodePtr;
NewNode : out NodePtr);

end Nodes_Package;

16 Interrmerrics, Inc.

SAMeDL Development Environment - Module Manager Top Level Design

- tr-.ia.

- contains the procedure specs and global variables to
- manipulate trees of nodes.

with GlobalPackage: use GlobalPackage; - Global types, constants.

with NodesPackage; use NodesPackage; - Types, constants, required variables.

package Tree._Package Is

- The global tree that the data Is read into. Used by user-interface
- commands. Unnecessary, can be removed if the other packages declare
- their own tree variable.
GloballibTree : NodePtr;,

- AddNodeToTree(Status, Node, Tree) - adds the node to the library tree
- Tree. Not different from NodesPackage.Append at the present time
- because the Tree is not tree structured.

- Parameters:
- Status - StatusOk if the procedure succeeds, StatusError otherwise.
- Node - pointer to the node to be appended to the tree.
- Tree - pointer to the root of the tree to which the node is to
- be added.

procedure AddNodeToTree(
Status in out StatusType;
Node :in NodePtr;
Tree in out NodePtr);

- DeleteNodeFromTree(Status, Node, Tree) - deletes the node from the
- tree passed in. Not different from NodesPackage.Delete at the present
- time because the Tree is not tree structured.

- Parameters:
- Status - StatusOk if the procedure succeeds, StatusError otherwise.
- Node - pointer to the node to be deleted from the tree.
- Tree - pointer to the root of the tree from which the node is to
- be deleted.

procedure DeleteNodeFromTree(
Status in out StatusType;
Node in NodePtr;
Tree in out NodePtr);

- AddCaresAboutArc(Status, From, To) - add a cares about arc
- from the From node to the To node.

Intermetrics, Inc. 17

SAMeDL Development Environment - Module Manager Top Level Design

-- Parameters:
- Status -- StatusOk if the procedure succeeds, StatusError otherwise.
- From - pointer to the node from which the arc emanates.
- To - pointer to the node to which the arc points.

procedure AddCaresAboutArc(
Status in out StatusType;
From : in out NodePtr;
To : in out NodePtr);

- AddCaresAboutArc(Status, Node, Kind, UnitNarne) - add a cares about arc
- from node to the node for unitname, kind.

- Parameters:
- Status - StatusOk if the procedure succeeds, StatusError otherwise.
- From - pointer to the node from which the arc emanates.
- Kind - Kind of node to which the arc is to point.
- UnitName - the name of the Unit to which the arc is to point.
- Tree - pointer to the tree in which the nodes are present.

procedure AddCaresAboutArc(-

Status : in out StatusType;
From : in out NodePtr;
Kind :in NodeKind;
UnitName : in String;
Tree : in out NodePtr);

- AddCaredAboutByArc(Status, From, To) - add a cared about by arc
from the From node to the To node.

- Parameters:
- Status - StatusOk if the procedure succeeds, StatusError otherwise.
- From - pointer to the node from which the arc emanates.
- To - pointer to the node to which the arc points.

procedure AddCaredAboutByArc(
Status : in out StatusType;
From : in out NodePtr;
To :in NodePtr);

-- AddCaredAboutByArc(Status, Node, Kind, UnitName, Tree) - add a cared
- about by arc from node to the node for unitname, kind, in Tree

- Parameters:

18 Intermetrics, Inc.

SAMeDL Development Environment - Module Manager Top Level Design

- Status - StatusOk if the procedure succeeds, StatusError otherwise.
- From - pointer to the node from which the arc emanates.
- Kind - Kind of node to which the arc is to point.
- UnitName - the name of the Unit to which the arc is to point.
- Tree - pointer to the tree in which the nodes are present.

procedure AddCaredAboutByArc(
Status in out StatusType;
From : in out NodePtr,
Kind in NodeKind;
UnitName : in String;
Tree : in out NodePtr);

- CopyTree(Status, Tree, NewTree) - returns a pointer to the head of a
- tree that is a copy of the tree passed in.

- Parameters:
- Status - StatusOk if the procedure succeeds, StatusError otherwise
- Tree - pointer to the root of the tree to be copied
- NewTree - pointer to the root of the copied tree.

procedure CopyTree(
Status in out StatusType;
Tree in NodePtr;
NewTree : out NodePtr);

- FindNode(Status, NodeNumber, Tree, Node) - find the nodes with
- nodenumber equal nodenumber and returns a pointer to the node.

- Parameters:
- Status - StatusOk if the procedure succeeds, StatusError otherwise
- NodeNumber - Nodenumber of the node to find
- Tree - pointer to the root of the tree to search
- Node - pointer to the found node.

procedure FindNode(
Status : in out StatusType;
NodeNumber: in Integer;
Tree :in NodePtr;
Node :out NodePtr);

- FindNode(Status, Kind, UnitName, Node) - finds the nodes with
- unit.name and kind and returns a pointer to the node.

- Parameters:
- Status - StatusOk if procedured succeeds, StatusError otherwise
- Kind - Kind of the node to find
- UnitName - name of the unit that was compiled for the node to find.
- Tree - pointer to the root of the tree to search for the node.
- Node - pointer to the found node.

procedure FindNode(
Status : in out StatusType;
Kind :in NodeKind;

Intermetrics, Inc. 19

SAMeDL Development Environment - Module Manager Top Level Design

UnitName : in String;
Tree in out NodePtr;
Node out NodePtr);

- FindUnitOutdatedness - finds if a Kind/UnitName is out of date. If
- it is then the Outdated parameter is set to true, and a list of all
- outdated cared about nodes is returned in List.

- Parameters:
Status - StatusOk if procedure succeeds, StatusError otherwise

- LibraryTree - Tree in which to search for nodes and follow arcs.
- Kind - Kind of the node to find outdatedness of.
- UnitName - Unit name of the Unit to check outdatedness of.
- List - list of nodes that are outdated and thus cause the unit being
- checked to be outdated.

procedure FindUnitOutdatedness(
Status : in out StatusType;
LibraryTree : in out NodePtr;
Kind : in NodeKind;
UnitName : in String;
Outdated : out Boolean; -

List : in out NodePtr);

- BreadthFirstWalk(Status, Tree, CaresAboutList, Head) - walks
- the cares or cared about arcs given and returns a list
- of nodes. Overloaded function, walks the CaresAboutList, or the
- CaredAboutByList.

- Parameters:
- Status - StatusOk if the procedure succeeds, StatusError otherwise
- Tree - pointer to the root of the tree to walk
- CaresAboutList/CaredAboutByList - pointer to the head of the list
- or nodes that care to be walked.
- Head - pointer to the head of a list of nodes that were visited
- during the walk.

procedure BreadthFirstWalk(
Status : in out StatusType;
Tree :in NodePtr;
CaresAboutl.st : in CaresAboutPtr;
Head : out NodePtr);

procedure BreadthFirstWalk(
Status :in out StatusType;
Tree :in NodePtr;
CaredAboutBylist : in CaredAboutByPtr;
Head : out NodePtr);

20 lntermerrics, Inc.

SAMeDL Development Environment - Module Manager Top Level Design

- DepthFirstWak(Status, Tree, CaresAboutList, Head) - walks the cares
- about/cared about by arcs and returns a 0lt of nodes waked.
- Overloaded function, walked CaresAbout arcs, and CaredAboutBy arcs.

- Parameters:
- Status - StatusOk if the procedure succeeds, StatusError otherwise
- Tree - pointer to the tree to walk the nodes on.
- CaresAboutList/CaredAboutBylist - list of nodes to walk
- Head - fist of nodes visited during the walk.

procedure DepthFirstWalk(
Status : in out StatusType;
Tree :in NodePtr
CaresAboutList : in CaresAboutPtr;
Head : in out NodePtr);

procedure DepthFirstWafk(
Status : in out StatusType;
Tree : in NodePt;
CaredAboutByList : in CaredAboutByPtr;
Head : in out NodePtr);

end TreePackage;

Intermetrics, Inc. 21

SAMeDL Development Environment - Module Manager Top Level Design

Appendix B Module Manager Commands
The man pages for the SDE module manager commands follow:

sde.cleanlib - reinitialize library directory

Syntax

sde.cleanlib [pathname]

Description

sde.cleanlib will empty the directory samedl.lib present in the directory specified by pathname
of all files, and reinitialize the disk data file. The default pathname is the current directory.

Examples

The following sequence of commands cleans and reinitializes the SDE module manager library
in the directory /home/samedl.

$ cd /home/samedl

$ sde.cleanlib

The following command does the same thing:

$ sde.cleanlib /home/samedl

Diagnostics

The user is prompted to confirm the cleaning of the library. An error message is generated if the
samedl.lib directory does not exist in the pathname specified (or current directory if the
pathname option is not specified).

22 Intermenrics. Inc.

SAMeDL Development Environment - Module Manager Top Level Design

sde.creatlib - make a library directory

Syntax

sde.creatlib [pathnarne]

Description

sde.creatlib creates and initializes a new SAMeDL library directory. It creates a directory named
samedLlib for the library in the directory specified by the pathname option. If the pathname
option is not used, the current directory is the default. sde.creatdib creates a disk dam file named
samedLdat in the new directory. It initializes the disk data file to be empty and sets the
information fields to initial states.

Examples
The following sequence of commands creates a new SDE module manager library in the

directory /home/samedl.

$ cd /home/samedl

$ sde.creatlib

The following command does the same thing:

$ sde.creatlib /home/samedl

Diagnostics

The user is prompted to confirm the creation of the SAMeDL module manager library in the
directory specified by the pathname option (the current directory is the pathname option is not
specified). An error message is generated if the creation of the library is unsuccessful.

Intermetrics, Inc. 23

SAMeDL Development Environment - Module Manager Top Level Design

sde.list - list units/source files generated from the SAMeDL unit specified.

Syntax

sde.list [options] [unit-name]

Options

-a (Ada) List only units with Ada package or Ada package body

-f source-file (file) consider. the SAMeDL units declared in source_file that the
user created/compiled into the SDE module manager library as
parent units to find order information.

-L pathname (library) Operate in SDE module manager library present in the
directory specified in pathname (the current directory is the
default).'

-I (list) List the unit name, unit kind unit date, library source file, and
external file.

Description

sde.list provides a list of units in the library that were generated from the compilation of the
SAMeDL unit specified in the command line. All the units in the library are listed if no unit is
specified. This command would be useful for creating script files for automatic compilation of
files into the user's ada library.

Examples

The following sequence of commands lists the units generated by the compilation of the
SAMeDL module named abstract_med in the SDE module manager library present in the
directory /home/samedl.

$ cd /home/samedl

$ sde.list abstractmod

The following command does the same thing:

$ sde.list -L /home/samedl abstartmod

24 Intermerrics, Inc.

SAMeDL Development Environment - Module Manager Top Level Design

The following sequence of commands lists only the Ada package specs and bodies that were
generated. from the units in the file user.sme that the user compiled into the library. The SDE
module manager library is assumed to be in the directory /home/samedl.

$ cd /home/samedl

$ sde.list -a -f user.sme

The following command does the same thing:

$ sdelist -L /home/samedl -a -f user.sme

Diagnostics

An error message is generated if the SDE module manager library does not exist in the directory
specified by the -L option (or in the current directory is the -L option is unspecified). Another
error message is generated if the SDE module manager library is locked by another process.

Intermetrics, Inc. 25

SAMeDL Development Environment - Module Manager Top Level Design

sde.Is - list compiled units

Syntax

sde.Is [options] [unit.name]

Options

-a (all) List all units visible in the library.

-f source-file (file) List only units found in the user created/compiled source file.

-L pathname (library) Operate in SDE module manager library present in
the directory specified by pathname (the current directory is the
default)..

-I (long) List unit, unit.type, library entry date, source file name,
library file name.

Description

sde.Is provides a list of the SAMeDL units compiled in the SDE module manager library in the
current or specified user directory. Options are provided to give more or less extensive
information, or to provide a list of compiled units occurring in specified source files. Providing
the unit name of a unit gives information only about the specified unit.

Examples

The following sequence of commands lists the units in the SDE module manager library present
in the directory /home/samedl.

$ cd fhome/samedl

$ sde.ls

The following command does the same thing:

$ sde.Is -L /home/samedl

The following sequence of commands lists complete information about the unit abstract_mod
present in the SDE module manager library present in the directory /home/samedl.

$ cd /home/samedl

26 Intermerrics, Inc.

SAMeDL Development Environment - Module Manager Top Level Design

$ sde.ls -1

The following command does the same thing:

$ sde.ls -L /home/samedl -1

Diagnostics

An error message is generated if die SDE module manager library does not exist in the directory
specified by the -L option (or in the current directory is the -L option is unspecified). Another
error message is generated if the SDE module manager library is locked by another process.

fntermetrics, Inc. 27

SAMeDL Development Environment - 4dodule Manager Top Level Design

sde.rm - remove unit and library information

Syntax

sde.rm [options] unitname

sde.rm (options] source_file

Options
-L pathname (library) Operate in SDE module manager library in the directory

specified by pathname (the current directory is the default).

-V (verify) verify the removal of each unit.

.v (verbose).list the units as they are removed.

Description

sde.rm removes all information associated with the named unit or file. When unit_name is
specified, the corresponding files in the library are removed.

When source-file is specified, the units in the user created/compiled file as well as the
corresponding files in the library are removed.

Examples

The following sequence of commands removes the unit abstractmod from the SDE module
manager library present in the directory /home/samedl.

$ cd /home/samedl

$ sde.rm abstract_mod

The following command does the same thing:

$ sde.rm -L /home/samedl abstract.mod

28 Intermerrics, Inc.

SAMeDL Development Environment - Module Manager Top Level Design

Diagnostics

An error message is generated if the SDE module manager library does not exist in the directory
specified by the -L option (or in the current directory is the -L option is unspecified). Another
error message is generated if the SDE module manager library is locked by another process.

If the verify option is specified, the user is prompted to verify the removal of the specified units.

Intermetrics, Inc. 29

SAMeDL Development Environment - Module Mana.Rer Top Level Design

sde.rmlib - remove SAMeDL library

Syntax

sde.rmlib [options]

Options

-L pathname (library) Operate in SDE module manager library in the directory
specified by pathname (the current directory is the default).

.v (verbose) list the units as they are removed.

Description

sde.rmlib removes all information in the SDE module manager library in the directory specified
"by the -L option (the current directory is the default). It deletes all the files in the SDE module
manager library directory, and the removes the directory.

Examples

The following sequence of commands removes the SDE module manager library present in the
directory /home/samedl.

$ cd /home/samedl

$ sde.rmlib

The following command does the same thing:

$ sde.rmlib -L /home/samedl

Diagnostics

The user is prompted to confirm the removal of the library. An error message is generated if the
SDE module manager library does not exist in the directory specified by the -L option (or in the
current directory is the -L option is unspecified). Another error message is generated if the SDE
module manager library is locked by another process.

30 Intermerrics, Inc.

ShmeDL.TR.2.O.15 Bey 92

APPflIDIX G

CSU Test Cases

G-1.

000

0

0R

0 r.4 0 4

0. c #a 4)

0 a : Hw -

004 U to c t t

:o x 0) rl "-IF4 = 0 0
to4 W 4 41 41.a 41 F-4 A0~
a).. =. 4.) 0 0) to 0 U

Z ~ 41 C r. 0 a
0 00 0 00 c' 0 4

IAW 04 c o 000WA 0
04 4j 0o 00 o10 w

.c go WV $4 $4 M 0 4" V to U)
E-4 $4 0) 00 ka 0 -V 0 1.4a x 4) w 2

00.0.0 no0.adIOV 0. CL V oo.)A
Go a a, 4 004 0.4 0.4 410 0. 0

00 '0.0 4 . ad *>i V .ad 04
06 (o U tvO U 0 4J 4'
0 0 0 it 044 -l as)wO1

4-) f-4 9.4 C4 a0. N 004 e 0
0o 0 Ml r) to 4) to)I 0 3.L 0 lad
01 Nl E -4 01 0 Q)

000 E-' 00-U 0 E

0 '0o 'o ni 4.) o~ .0 .V ~ W Lo 41
.C 1 0 0 >4 0 0 fn 0 $4 M >4 >4 C

01 2 (2 ca to Mu0 0 to2 E-~4 4. /2f E-'

0 rx
SV 5

0 J2' 0ý 0 m
0Aqr:. 0 N

IVt 0 01 N~ E--4La N
4j. 00 W 0 0 0 0 o -

4'0 0i ON N 0i4z
2) 00 ' :0 0

0 0 00 '0 4.)4U 1

to 0- 4 0 0 n 0% 0n .'- >i v

02 '4 v 4'.v A

A6 Aa A 1- 0 A)w 0

Co aj 41 410 41 41 41Cm. 410 41~ 4m 41 41 4'1
.'q: 4) a c c c c : 0 cc

41U Cmn 132 w3 w3 132 132 w0 U

* 0 4 '
0O W * 14-C *L -
w J: 4) '4 c4 t 4 ul rý- 0 'C . O-4 'o-4

9w4' - -

000

0i

>

U0

0 0

01. *$*

~E-4 1 0 *. ~

0 14 w w 14 U0lb cd -4Li

0 to C C U uA U)) % H 40 w
w~ ~ 0 0 WOw

Ad .C 0) -F4 '-i . 0 a
to C g 4) 41 .C 41 41~ f4 c~ ma) 0 41) 0004 0 to 0
4$4Z 4' C r_ a a> I

0~~ 0 c 0
00, r. 000 40

*-11f4 4 0 Maa. 0 oO w4
=~~ ~ w) ivw wU) . o(

AI LI) gou o
it OfU)) d O 00 VI 0-d 4) (1I

U)) QI ad4 a) C Q1 = U 0 Ud
ON ~ 0 a u. H0 V >4 E) 01 d

0.1 04 U4 -0 U 0 w 1C 04
0o 0 t 0 0 w00 0 CaO vI
00W 0 U) V 4) t)) 0 4..L 0 W.

E-N aO N '.vq 0ý tOU 0 L4-)
n0 0 0 E-4 00-U 0 E-4 E-4 c

CO 0 % D %DO Ml 41 %Q z _ 4) 41 Ml Wa) Cl) W Q) .
. 1 0 0 >4 0E 0 $4 OLC M >4 >4 a5.w

.. , 3c W Zi M Cal al W W luto -H 0 l E-41 CWl) E-4 QA
41

0410
(n C
Z IV

> Cl CU

00O~ =; 8 0 m g 4 C 0
r- 0 - 0f 0 z 0. 0 0

4j W 0 0 0 0 0% 0 o E4 c
M4 to 0 w: OD CA 0'. rn 41

r 0 0 0 0' C 0 E4 l
*.l0 00 0co~ '- u

0 0 0 01 4.1 m tz m t

S *I- A A A , o0 A l)0

0.444 U 0 0 0 =V I >. v v
ad A it A

w1 0 01 w1 w 01 '. 010 .4C) -A 0) 014)
0 w C 41 41 41 41 41 4V 41 41 41 41 V 41 wa

4 ~ ~ 1 0) C a a a CO C C c 1:6
4.)~ In "= w 0wu t
0S 1 * 0 0 4101)

w* 4 L D C D 0 .1 0
C1 41 -= - -.- = *- =

.~E4 0

a 41 >
*,4 0 Ia)

> Q
IA 0 41

0 t $ 0 0

to) 41 *0 * * O
41 41 1 ca 01 m1 toIola

0 r 1 3 41 41 01~.4- 41 w0 4
0* 0 .4) t w~ . V041 14) '- 41 l4a0c-V

~~~41 0 0,)w t a 4 041> 04 ?a .H F Et
14 3tL) 0a) 41 41 4141 0 41 V HW 0 0 4 )

41 C 4 41 to (01% 411 > 41 . 410 04 =
ra2 41 4) 4J 41 4) A W ta C 4-)414)e-4

414.l M 04 to 0~ 0 00o
*",. . 4) 0 4j r4 -40.*4

-r4 > 0 0 0 m 4 414 0 c~ 0 0 0
41 41 N.4) u 1 tol- z 010W.0w.

U3 0 M~ ltA 0N W - l4J to V 14 WV lad -4 V1
-4 Z. w 1 4 w 0 4) 0 0Ch $4a 41 0 w w .4 1

U04 m4 c IV o. 141. IV - V 3. .
4104 01...4 0. 41c to41 0.. 41 eg 41

m. 0 to ad O m. 0 0 v) O
0 toQ f 4) 0.. 04 1~ 0E 04 4)> ) IQ, D U

41 toV 0 0 0 c11~ 0 c1 do 04 to

4) 00 m I a U1 4 )a. c ' 4 1. to 0 0 1 W
cl~ i- 4 0 w 40~0) 0 74- mZ*4 -

A' 0A 0 N to IV0 N 0 N ,410
0 0 0.. rli- 0E-l- a -4

0 4l %0 r4 41 %0 10 to 4V %o z c4) 4.)
0 - F4 H 00 4) C 44 0 (0) = 4 to 0U)0Ld 0wrt

V4 4) V
g * -4 1 a 41 0 4 n

00

r4 -1i- W1 P-40 0

r- "a 0 0 0 0
4j) 0 o N N OC% 0

W0 0 o u 0 0 ON
w L~>~4 0 0A ) Z H z- -

0 Ch U C.

W~.1.a W W 4' 4) 4) - 41 4.) q
.. 0o 0ad~.* 0 0 0

VV Q A 0 :4J
C qm t A A A -W~ A A f'-

M0 4 o. XO 0. U) C6 0 04 f'. m cm I

to toO0 A $4a

r_ 41 cu m1 U)41 41 41 4) cu 41
0~.4 4'% 4' 4) 41 A 41 4) 4) 41 J 4 4J V

..4 r,-4 CC lala C C C CC~

a 0 0 0 1-
E0.1a il *w a

w a401. -0 r-- Cý '0.
~'L 1~ L



0

rP4

I--I

-Ia

i ,.- 0 O 04 40

o1 , 0 .,4- 0 0 IV1 -4-.. 010 0V 0 0
a 1 01 01 0 0r" ( 01•o 0 41 141 to 0@4 0)

4 , = 4 04•o1.1 ... I .o 0, m 4) > A 0 4..
H -4 4 44> H 4J 44 -4 '144 0 0 u to

-4 01 4-- 41 # to to

FA~~ w goo 0M cl _ $ 44

>40 > 0 0a Ai > 0-4 0 01* 0 0 r 01)0
r~Z A41 '0 4IJ W > 0 ZE-4 41 = 4J~~0 44

00 a01 0 0 0 ,.1 to : 4

. 4 4 U 4 = >4 U a

0 A . I , -4 01 . - . , 4 --4 acu C
x V -4 a x C a k V 4.TmPC 00

fn $ 4 1- r4z0 _ka = Q41

0 0 to 4) %4 V 0HH 0t H -4 t to
44 • v4 C 0v0 w 4 V-4 P 4 Z k V>01 31 0 1 0) 0 0 U 0 3 04. 4 4) adi) a

o 0 V m -,-4 c V 4t 0 .H. .,.U44J 0 --q - Pl
(aP4 ;0 *'4 -40A 0 to WH 14) A3 ~0-4 -r4 -40 N001) 0.-

4)010. 4V r-I 41 V4) 0E-4 >i4J 4J4 4 v 0 ca$-w 0 0410

.A > 0 0 > 0100 00u a)-40 4) = u4)4)co 0 w-.W 0 w V4
$.'a0 1 "-4 0 W" h V4 tO -4 $4 = .C 1 -4 a r-4 (a-4 E- E c

01 M 04V 6 -4$4PO $4P 4)~ 0E-4W V 0, CV 41-ISa W UO t ) 010 W ) 01-4
U o . .)= . .n m4 -C 0 0C 0 0 c >4 = >4 •

-4W 04 H 4 .H L -H • VC .Ad PC W E-4, 4 , E,.-4

C 0

00 0 0 W1
0_ 0

1.4 u a- C
0 0 IV00

-W 4J E-4

0 A 1 A 01' > >4
Z C-4 -4 C-q q-4 .co )U
0 -v fi. .'- f
H r_ I I m :4 4J

u 0 0 0 A A
~c 0 41 9 x C 0 j..1 N A IV A

r*) 0C u aO u .C 0 u > Wz. 04
-f V t - -.-4 V ON0 V V V V

4j . .,q4 * 41 4 '->
.c A F- A $4 it A 02 u- ) - 0 -

)OUN (n Q) U) W N W2 tn 4) 01 0 )0
--41- . 01 VU Cu 41.-z 0% '0 0D V1 01 41
J1I v - *-4 V S- 4v A4j ca C 4 Sa

C ý 4 ý4 04 C:C 14 c0 u 4 c ~ 0



0

H
E-4

0
04
U

14

Od

04

t.I

:;0.4

tn

0

0 4

x
v

41I

0q



?A0  z
0

E-

rla

0

0 54

* 00 i 0 u

0 4)0 00.
oo 0 C) 41 41. U2d 240

r-4 02 02 c 0,00- c *
U 02 c -4 02

93. 0 0 to to0 w k >

.4 > 0 45 00 64 I.3 41 u
-'.-I0 to.4 )Q 04.) DO .DO. 41. 4.) ad U a4

as m. 0.. " -1 0. 4J 4.. 0.. 0 0 .'

0.0 Go P 0 x U) U UY 0. -
0. 0 U 1- Uc >4 U1 (A.i.

* 0 0 - 00 0 go 00 -P45.
$4'. 0 N -NE 0 OW4 F0' C w4

410 0 '. 0 00 E-4 to Z a - 4 to iv 0- 01 c

ON NO No 0 n-4 0o to. to >4

0- to 00 M 0 to n n-4 0 0- 0 0.,.

a,-
r- A

U2 a V 2

.r4 ) *n -'- c *.tu0 0
4J 00 t 0 v. '4

Zr 0 0 0' $4 MI~ 0
Cz1 O N Nq co 4f.4 r4 L9. 4J E' -

4 4z V- 000 2i c w. 0 ~2 U
0 00 '. 10- 0 41 0- *-P41 41 E-4

-j ., 0 0 w' U 2 > 4

0 0 m0 z2 to4 :-4 00

0% b n 0 in~ :c c P A A
0 A A A A f'- fl 120. 04 - ln)-4 ~0 > a.

u 0  Q4. U 0.. H- ON ~ Z 4 -4 0. O0 -P1 V V
O V V V V % *) =0 :0. z Q. 4j.J

A W CC.OA 2.4 2
0u In ~ $4 w .. 5.4 4N c.. 4). 2.u OU 0

-04a) 4 0) 0)0 0 4 4 t 4)& 0 00 0)0 4-j -4 DW .4.) .4

-, 0 -4 a , cd C U C.4r.4

A0 -40 ) w2. .0 wV wV m ~ .. -
2.02 z4 N 44 inti.)-. Cl 0.a *~0. '4

rm U c- *4 -J * m



-E-

* V%

1-1

0

140C C *

u w0 4) 04 .4 4) $4 4

0 U) w ~ U w 4 14i Ie ol
w~ _V4 U) to t P4 U 0 U '

04V Uo u) (a U *

0~~U 01 0 1 c .4
410 0 1 4C.) = 4. 0 '

MJ ?A 1 C1 41 0o .C0
41to 41 r r_ ) 4 1N

4)z 0 . v 0CC
m 0) 0 0 C r-4 0 C

z r_ ad 4 0 -o
to) to 4) WOO w

r4t% 0 0 W~ 0 0- 0) 0 ) 0 w~ Z eZ
>.4) w~ 000to41 (Du = 45 41 41 0 (a 0u

E--..P W. m 0. .H 41 m. 0. 0. 0. 0 .
0dC v. a= Cd-04 0 0 4) 4 04C

ad 0 d00 U Ui u U) Md - C
.. 4 0lI U - u U U0 41~ 04it41

it ' a00t0 WO toV cc 0 0 L1eU u I
cO ' -4 OD r-4 0 r 4 0 urf N 0.
to eq 0 000 a '-40It>4 to ?A 0 0.. 0 CdV
0 z- 0 0(a4 Z -r4 *.4 -) 0) 00 0

0w Nq N4 0 N-40 IC 0 I~41
00 00 E-4 0 0-0.0 0 0v I E-4 41 E-4

0n m0 v0 %0 41 w 4.) 41 41 w, 0) w, -4
w- 00 to. 0 fn -4 to to 0 >4 =.c >4 =

E4 U, Z, 0 la n WV0 0 in U) E-..0 CO E-~C

C) 0

-4 iL) to VU
410 U, ca C v

> co >q
0 0 t) Ie CU. toN

41) f -4 co *'4 cc go M0
~ 0 0 41 V4 (L)0

Z -0 0 0 = go-ý -4 $-4~ 0 00
0 41J0 ~ z N N ON z 41 r-4 .,4 41 E- E-

-4t a 000 0 0 *-4 > t U, U,
00 .,q w 0 4D C 0I u -4V o >

000 C- 4 U Nc C -4 (n V)

N -. 4 41..4 f cc 41 41
4)E j 41 4J 4 '4 E-4 C U) -.40 :l c * goiS 0 um00m0 I E-e:-4 : 41 41 A

Ez 0' 0 00 O c = c a A -W A
0A A A A r- Un ad. 0--4 LtA-.4 ~0 > rZ.. 0..

o ~ 04 M 04 H U, V-4 0 - 0 --4 V V V

A W M eA W~ ) ~
0U 1.4 w. W~ w~ w- 1N I we I~c Iw c QN ) ti) 0)

...*4 W 0 W0 0 4d~ 00 0 V0 00 4J.)-4 L 4J 0l)41
0 41 M 41 41 4141 41 41 V 41 r 41 -4 41 -.-4 r_41V C w- C

C 4 r-~ C4J C 4, Wz)C ) 0. d

0 0 w) to. 4) U C

0 -1e 0 :1 - 41

w4 M w c- = 4 - - * r- M a -% (L



Jc 0 4).0

0

M~ > E-
.C .40.

P-4-W

to >

rq. 0p.44) * *I.

0 c~ 0 u w E

U r-4 *'4- to
4. Lo 0) ) Of U) @3 Ib

to = U) w r4
(A .494 4 4J 4J @3 41 41 ,41 S-a 41

4C >C @4 z. 0EU0 r_ 0 0 u to 0
o m la. 0 r 0.14ad)a @O

0) ..- 0 ')314
(fqO Wl w4 U) w) PC U) Nl) 4J 4) *-EO

.C SEe m0 EU mU S- w 0 ~OC uJJ 41 @3 go @ Q
E2 4 0 0 0 4J ) @4 44 .C C CC @V W- 4. -.6)

4J to Wzt 4m w m m cn 0 i rq-V4-0 040 4 0
0)0 t .040 04U11 ( 04 is 00-- 04@3 3

Q toto) 00@
V 0dg 0 cU 00334WC 0 X. 0 I
f-0 0 ) Q0 ~ 0 -4 q.cc .4 i

0t0o Oa co 0) 04 $4a 0 0-- 0

to 0 ?Au-4144 1r 0 01
El- M In0 o4

o4 0 U.0 F. I
0 04 $4

ý ý4 0 00

i) a) U% *U)

2-1 0
,q j04 r. 4...U4 ) r_:

a 00 c-4 Wuo

0 40 As A- A3 Z* 0 r4 z0 004

I U M U U U3 N4-
-1 I.E S-a S-) E- S-a U) z)Sa I4

13 @3 %0 Q3 @3 -4~ o~ @0 @0 &

4J EzU 0 4 C,,0r (zq 00j
00 300 U- 4-a 4-E 4Ja-a0 W

rx4 i W4 U U 0- m .1 .4 . > .4 - -4 -



- -

"z
0

E-4

'-I

W o
•/ I•-,•--

E4 O

"0i~ 0 , .,, 4

E-4 0 ,o -4 1 * E4
, 1-4 -k E•H -- -4 0-

0 4. >4 =,'4 00 .,- ., H, to),..

0) 0 04 0 ,

.• .- .4 I ., .,0 •0 u0 L 0 u 0 • Or

-- 0 -. I-,, d0 -n= = * 0'-"4

0000 *• -•I, O! 1.40 a * -14 00W10
• • 0 W.-4O 0•. 0 • !.0 • . .0 0 . 0 V'-40

00*.-Ai 41 1401- 1 Ie 0 *I 4

- "0 > H > to1'- 1. -0 >"-, 0--
CL 0 0 0 -to0 w 0 Acto w

0 a%/) 1% CL >42- 01 1- z0U1 r-

,4 C olZ1, • .v 0% 0 m 34 W c o W .to
) 0 to 4) ) 0 a 410) P- W40 I~0'.-4.- 1 0 f.0-4~ 10 .e U -4 -ý4 " (L

PQ. in~0 7% >. x r41 >l u1 14 V I
go W,.p'azWIV 1o X W.H 0W0 "4 0 W0 n1- 0) -4W CC10

to 0 4f)O4C 4 0 IGU)4Q 0 C <-40.r

W 4-4

m01 a0 E-W A '1
10 *- 41 .4W r_ e 1 to 4 1

to $ 44 -rq 10t $ 01 " 04 -4 to >- t
4- 4)111.. -- 41 CL -1.4 41

0'% -r4 44 "0.4 01 w -

0~> -4 N - ~ >
-~ý re' 4 -4 -4 0.

.P4 (64 10 -q -4

'-I P 4 41 41 4 .1 u r
U 41 ' * 04 e.14 v-.-1 0-4 04(1-4 ) -41

>C 0 ~ '1 ~ 001 004 rO > w >
4.) ' 0 E1 E .. 4 '1. -4d <-4 '4-4 CL-4-

0 :,4 Z-q 3 to = M -- ,0 V0 :0-4((
41. 3:I -W 0 1 0 1.0.

U 4 0-w r-41 "4L v-4 I r-U Ie -P e Ie v-4 4
C~ 000A 0 0~ 0n 0 n0>C 0 10 a1 0 c

S-ý4 0410 0~ N~ 16 Im P1-4 V-4-'-
10 010.9. 0 0 00 10 100

0 1 v .4) 4). 1.J la.d0 0
4)1 uA 0 r0 '0 c w

- - . - m W - -W N



0
E-4

00

.0 >*1 4
"*4 34 QE C 0

H 41 44 -4 4 4 0) to
4)1 10 JJ 4 1

0 -.C-4 0 0. 0 c d Q. I. U
z -1 144 U) U

41 to~& C 41
~~'0".40 ~ --. 41 1 ~ 41
~ JJ~ V J'-- 41 0 C 0 _

go 0.-4 0 r- l
04 Z 0 r. $4

0 93

0 z 0 c C.C~41 0r .to u
00U0 3t 0 41 4) 4 064C c 41

tP E-4 "4J FO -P 41 3:,- o4 0 -C
toE4 *~ to ' r- to - to .41 w , tor-

toUt U - 0 0 to i).w 0 1

to H 4) -- 1 3t i 0 - -- 0 C4 C 0 0
4) 0 &4 >1'O $j41 0 a,4 a 0 4141

W-4 (D 4)40 0 5.,. 0 $4 0 W4.U
W-~~. 1 -4 -C -4 ?A.-M E-4 4J E-4

4) ~~U w1 O.) Air- w. w 0) i
t4 "- 0 0 -4 r > =C :W4 C 14

4 i~ eCwI4 E-4 &0 CO E-4

V0 u
-.

'44 A)

0 "441 0

0 4 = aO ) U

* 0 -k > AL

ul ) m )
410 -" o ) 41

4-) (1) 41- W ~ w1 C

OwO 04

N CM Q~ NA %O r


